scholarly journals Exercise-induced maximum metabolic rate scaled to body mass by the fractal dimension of the vascular distribution network

2016 ◽  
Vol 46 (4) ◽  
pp. 337
Author(s):  
C.Z. Roux
2021 ◽  
Author(s):  
Tanya S. Prinzing ◽  
Yangfan Zhang ◽  
Nicholas C. Wegner ◽  
Nicholas K. Dulvy

2018 ◽  
Vol 314 (4) ◽  
pp. R563-R573 ◽  
Author(s):  
Mun Aw ◽  
Tamara M. Armstrong ◽  
C. Michele Nawata ◽  
Sarah N. Bodine ◽  
Jeeeun J. Oh ◽  
...  

In general, the mammalian whole body mass-specific metabolic rate correlates positively with maximal urine concentration (Umax) irrespective of whether or not the species have adapted to arid or mesic habitat. Accordingly, we hypothesized that the thick ascending limb (TAL) of a rodent with markedly higher whole body mass-specific metabolism than rat exhibits a substantially higher TAL metabolic rate as estimated by Na+-K+-ATPase activity and Na+-K+-ATPase α1-gene and protein expression. The kangaroo rat inner stripe of the outer medulla exhibits significantly higher mean Na+-K+-ATPase activity (~70%) compared with two rat strains (Sprague-Dawley and Munich-Wistar), extending prior studies showing rat activity exceeds rabbit. Furthermore, higher expression of Na+-K+-ATPase α1-protein (~4- to 6-fold) and mRNA (~13-fold) and higher TAL mitochondrial volume density (~20%) occur in the kangaroo rat compared with both rat strains. Rat TAL Na+-K+-ATPase α1-protein expression is relatively unaffected by body hydration status or, shown previously, by dietary Na+, arguing against confounding effects from two unavoidably dissimilar diets: grain-based diet without water (kangaroo rat) or grain-based diet with water (rat). We conclude that higher TAL Na+-K+-ATPase activity contributes to relationships between whole body mass-specific metabolic rate and high Umax. More vigorous TAL Na+-K+-ATPase activity in kangaroo rat than rat may contribute to its steeper Na+ and urea axial concentration gradients, adding support to a revised model of the urine concentrating mechanism, which hypothesizes a leading role for vigorous active transport of NaCl, rather than countercurrent multiplication, in generating the outer medullary axial osmotic gradient.


2006 ◽  
Vol 3 (1) ◽  
pp. 100-103 ◽  
Author(s):  
James F Gillooly ◽  
Andrew P Allen

Debate on the mechanism(s) responsible for the scaling of metabolic rate with body size in mammals has focused on why the maximum metabolic rate ( ) appears to scale more steeply with body size than the basal metabolic rate (BMR). Consequently, metabolic scope, defined as /BMR, systematically increases with body size. These observations have led some to suggest that and BMR are controlled by fundamentally different processes, and to discount the generality of models that predict a single power-law scaling exponent for the size dependence of the metabolic rate. We present a model that predicts a steeper size dependence for than BMR based on the observation that changes in muscle temperature from rest to maximal activity are greater in larger mammals. Empirical data support the model's prediction. This model thus provides a potential theoretical and mechanistic link between BMR and .


2013 ◽  
Vol 82 (5) ◽  
pp. 1009-1020 ◽  
Author(s):  
Lawrence N. Hudson ◽  
Nick J. B. Isaac ◽  
Daniel C. Reuman

2016 ◽  
Vol 90 (3) ◽  
pp. 1037-1046 ◽  
Author(s):  
S. S. Killen ◽  
T. Norin ◽  
L. G. Halsey

1990 ◽  
Vol 151 (1) ◽  
pp. 349-359 ◽  
Author(s):  
F. Geiser ◽  
R. V. Baudinette

1. Rewarming rate from torpor and body mass were inversely related in 86 mammals ranging in body mass between 2 and 8500 g. 2. Most of the mammalian taxa investigated showed a similar change of rewarming rate with body mass. Only the insectivores showed a more pronounced increase in rewarming with a decrease in body mass than did the other taxa. The rates of rewarming of marsupials were similar to those of placentals. 3. At low air temperature (Ta), the rate of rewarming of marsupials was not related to body mass, although a strong relationship between the two variables was observed in the same species at high Ta. 4. The slopes relating rewarming rates and body mass of the mammalian groups and taxa analysed here were similar to those obtained earlier for mass-specific basal metabolic rate (BMR) and body mass in mammals, suggesting that the rate of rewarming and BMR are physiologically linked.


Sign in / Sign up

Export Citation Format

Share Document