The relationship between body mass and rate of rewarming from hibernation and daily torpor in mammals

1990 ◽  
Vol 151 (1) ◽  
pp. 349-359 ◽  
Author(s):  
F. Geiser ◽  
R. V. Baudinette

1. Rewarming rate from torpor and body mass were inversely related in 86 mammals ranging in body mass between 2 and 8500 g. 2. Most of the mammalian taxa investigated showed a similar change of rewarming rate with body mass. Only the insectivores showed a more pronounced increase in rewarming with a decrease in body mass than did the other taxa. The rates of rewarming of marsupials were similar to those of placentals. 3. At low air temperature (Ta), the rate of rewarming of marsupials was not related to body mass, although a strong relationship between the two variables was observed in the same species at high Ta. 4. The slopes relating rewarming rates and body mass of the mammalian groups and taxa analysed here were similar to those obtained earlier for mass-specific basal metabolic rate (BMR) and body mass in mammals, suggesting that the rate of rewarming and BMR are physiologically linked.

2014 ◽  
Vol 43 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Helena Moreira ◽  
Betânia Passos ◽  
Josiane Rocha ◽  
Vivianne Reis ◽  
André Carneiro ◽  
...  

Abstract The object of the study was to analyze the relationship between aerobic fitness and body composition in postmenopausal women. We hypothesized that postmenopausal women that had higher adiposity had lower cardiorespiratory capacity, regardless of the characteristics of menopause. The sample included 208 women (57.57 ± 6.62 years), whose body composition and the basal metabolic rate were evaluated by octopolar bioimpedance (InBody 720) and the oxygen uptake by the modified Bruce protocol. Most of the sample showed obesity and a high visceral fat area. The visceral fat area and the basal metabolic rate explained 30% of the variation of oxygen uptake, regardless of age, time, nature or hormone therapy. The values of the latter variables were reduced in the presence of high central adiposity (-6.16 ml/kg/min) and the basal metabolic rate of less than 1238 kcal/day (-0.18 ml/kg/min). The women with oxygen uptake above 30.94 ml/kg/min showed lower values of total and central adiposity when compared with other groups. With an increase of aerobic fitness, there was a growing tendency of the average values of the soft lean mass index, with differences between the groups low-high and moderate-high. These results suggest worsening of the cardiorespiratory condition with an increase of central adiposity and a decrease of the BMR, regardless of age and menopause characteristics.


2013 ◽  
Vol 82 (5) ◽  
pp. 1009-1020 ◽  
Author(s):  
Lawrence N. Hudson ◽  
Nick J. B. Isaac ◽  
Daniel C. Reuman

Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2653 ◽  
Author(s):  
Xinyan Bi ◽  
Ciarán G. Forde ◽  
Ai Ting Goh ◽  
Christiani Jeyakumar Henry

The underlying mechanisms that regulate energy homeostasis and food intake are not fully understood. Moreover, little research has been performed on the relation of body composition with habitual macronutrient intake among free-living populations. Since body composition and energy metabolism differ between males and females, we aimed to determine whether the relationship between body composition and habitual macronutrient intakes is gender-dependent. In this cross-sectional study, 261 participants (99 males) were recruited from Singapore. Macronutrient intake was evaluated from a three-day self-reported dietary record. Body composition and basal metabolic rate (BMR) were determined by using dual-energy X-ray absorptiometry (DEXA) and indirect calorimetry, respectively. Our results show that both BMR (p < 0.001) and lean body mass (LBM, p < 0.001) predicted daily energy intake (EI). LBM was positively associated with intakes of protein (PRO) and fat (FAT) in females, but not in males. This relationship persisted even after adjustment for fat mass (FM). On the other hand, no significant associations between FM and macronutrient intake were observed in both males and females. Therefore, the relationship between habitual macronutrient intake, LBM, and BMR is gender-dependent. Elucidating the gender differences in energy metabolism is important for understanding the factors that regulate energy homeostasis and can subsequently help better manage energy balance.


1994 ◽  
Vol 58 (3) ◽  
pp. 381-387 ◽  
Author(s):  
G. R. Iason ◽  
D. A. Sim ◽  
E. Foreman ◽  
P. Fenn ◽  
D. A. Elston

AbstractVoluntary food intake (VFI) of chopped timothy hay and metabolic rate were each measured in each month of the year in six non-breeding ewes of each of three breeds. Metabolic rate was measured using indirect calorimetry over a range of food intakes and adjusted for intake to an estimated maintenance metabolic rate (MMR). The breeds compared were the Dorset Horn (DT), Scottish Blackface (BF) and Shetland (SH), the first being less seasonal in reproductive and other characteristics than the other two which are hill or northern latitude breeds. There was significant overall variation between months in VFI which was higher in the summer (July to September) than in the winter (December to February) months (P < 0·001). There was a significant breed × month interaction (P < 0·01), the seasonal effect being most strongly observed in the BF and SH ewes, whose VFI in summer was proportionately 0-1 greater than the year-round mean but was 0-1 lower in the winter. The DT ewes showed much less seasonal variation in VFI. There was no overall difference in VFI between breeeds (DT: 43-7; BF: 49-5; SH: 48-1 g dry matter per M075 live weight per day, P > 0·1). Although MMR varied significantly between months (P < 0·001), there was no systematic variation between summer and winter. There was no significant breed × month interaction, but the MMR differed significantly (P < 0·001) between breeds giving a high overall MMR in BF (DT: 322-7; BF: 356-6; SH: 324-5 kf/kg M0·75 per day). No significant correlation existed (P > 0·05) between the monthly mean MMR and VFI in any of the breeds. The causal relationship between seasonal cycles of basal metabolic rate and VFI is questioned.


2017 ◽  
Vol 12 (10) ◽  
pp. 1378-1384 ◽  
Author(s):  
Miguel Sánchez-Moreno ◽  
David Rodríguez-Rosell ◽  
Fernando Pareja-Blanco ◽  
Ricardo Mora-Custodio ◽  
Juan José González-Badillo

Purpose: To analyze the relationship between movement velocity and relative load (%1RM) in the pull-up exercise (PU) and to determine the pattern of repetition-velocity loss during a single set to failure in pulling one’s own body mass. Methods: Fifty-two men (age = 26.5 ± 3.9 y, body mass = 74.3 ± 7.2 kg) performed a first evaluation (T1) consisting of an 1-repetition-maximum test (1RM) and a test of maximum number of repetitions to failure pulling one’s own body mass (MNR) in the PU exercise. Thirty-nine subjects performed both tests on a second occasion (T2) following 12 wk of training. Results: The authors observed a strong relationship between mean propulsive velocity (MPV) and %1RM (r = −.96). Mean velocity attained with 1RM load (V1RM) was 0.20 ± 0.05 m·s−1, and it influenced the MPV attained with each %1RM. Although 1RM increased by 3.4% from T1 to T2, the relationship between MPV and %1RM, and V1RM, remained stable. The authors also confirmed stability in the V1RM regardless of individual relative strength. The authors found a strong relationship between percentage of velocity loss and percentage of performed repetitions (R2 = .88), which remained stable despite a 15% increase in MNR. Conclusions: Monitoring repetition velocity allows estimation of the %1RM used as soon as the first repetition with a given load is performed, and the number of repetitions remaining in reserve when a given percentage of velocity loss is achieved during a PU exercise set.


1992 ◽  
Vol 83 (3) ◽  
pp. 325-330 ◽  
Author(s):  
Franco Salomon ◽  
Ross C. Cuneo ◽  
Richard Hesp ◽  
Jenny F. Morris ◽  
Lucilla Poston ◽  
...  

1. The relationship of lean body mass, plasma insulin concentration and leucocyte active sodium transport with basal metabolic rate was investigated in 24 adults with growth hormone deficiency before and after treatment with recombinant human growth hormone and in 10 patients with untreated acromegaly. 2. Based on total-body potassium determined by whole-body 40K counting, patients with acromegaly had increased lean body mass, whereas lack of growth hormone was associated with decreased lean body mass. 3. By indirect calorimetry, patients with acromegaly had increased basal metabolic rates and patients with growth hormone deficiency had decreased values when expressed as percentages of values predicted from the WHO/FAO/UNU equations. Basal metabolic rate expressed in terms of lean body mass was similar in acromegaly and growth hormone deficiency, but was higher than normal in both patient groups. 4. The leucocyte ouabain-sensitive sodium efflux rate constant was decreased in both patients with acromegaly and patients with growth hormone deficiency, and there was no correlation with basal energy expenditure, fasting plasma insulin level or serum growth hormone level. 5. There was no increase in the sodium efflux rate constant in patients with growth hormone deficiency after 1 month on treatment with recombinant human growth hormone. 6. Apparent differences in basal metabolic rate in growth hormone deficiency and acromegaly are due to changes in lean body mass. Both adults with growth hormone deficiency and patients with acromegaly have increased energy expenditure, probably owing to changes in fuel metabolism which are not reflected in the leucocyte sodium pump activity.


Sign in / Sign up

Export Citation Format

Share Document