Scanning Electron Microscopic Examination of Yersinia enterocolitica Attached to Stainless Steel at Selected Temperatures and pH values1

1988 ◽  
Vol 51 (6) ◽  
pp. 445-448 ◽  
Author(s):  
PAULA J. HERALD ◽  
EDMUND A. ZOTTOLA

Attachment of Yersinia enterocolitica to stainless steel surfaces at 35, 21, and 10°C was investigated using scanning electron microscopy (SEM). Cells adhered at all three temperatures, but, in general, the greatest number of adhered cells were observed at pH 8 and 21°C. Multi-flagellated cells were noted under these growth conditions. When grown at pH 9.5 and 21°C, fibrils were observed between cells and extending to the stainless steel surface. Fewer cells with flagella were seen at this pH. Adherence may be related to the flagella and any exopolymer surrounding the cells.

Author(s):  
Loren Anderson ◽  
Pat Pizzo ◽  
Glen Haydon

Transmission electron microscopy of replicas has long been used to study the fracture surfaces of components which fail in service. Recently, the scanning electron microscope (SEM) has gained popularity because it allows direct examination of the fracture surface. However, the somewhat lower resolution of the SEM coupled with a restriction on the sample size has served to limit the use of this instrument in investigating in-service failures. It is the intent of this paper to show that scanning electron microscopic examination of conventional negative replicas can be a convenient and reliable technique for determining mode of failure.


1993 ◽  
Vol 39 (11) ◽  
pp. 1014-1021 ◽  
Author(s):  
L. Mihailova ◽  
N. Markova ◽  
T. Radoucheva ◽  
D. Veljanov ◽  
S. Radoevska

Listeria monocytogenes 4b and its forms without cell walls (L forms of a protoplastic type) were used to study in vivo interactions with host cells. Samples of peritoneal lavage fluid were obtained from rats intraperitoneally inoculated at intervals between 1 and 15 days after challenge, for scanning electron microscopic, bacteriological, biochemical, and cytometrical investigations. Scanning electron microscopic examination revealed continuous adhesion of L forms on the macrophage surface up to 15 days after inoculation. The persistence of the L forms within the peritoneal cavity was also shown bacteriologically at all sample times, while the parental bacterial forms were isolated from the peritoneal cavity up to 7 days after challenge. The total count of peritoneal exudative cells determined by automated flow peroxidase cytometry peaked on the 15th day in animals infected with parental forms, while in animals infected with L forms the peak was lower and the macrophage population was predominant. The glycolytic and acid phosphatase activity of peritoneal exudative cells was two times higher in rats infected with L forms as compared with rats infected with the L. monocytogenes parental forms on the 3rd day after challenge. An understanding of the nature of the interactions between L forms of L. monocytogenes and peritoneal exudative cells found in vivo could be used to establish the influence of L forms on host cellular defense mechanisms.Key words: Listeria monocytogenes, L forms, peritoneal exudative cells, electron microscopy.


1982 ◽  
Vol 28 (10) ◽  
pp. 1119-1126 ◽  
Author(s):  
M. Bastide ◽  
S. Jouvert ◽  
J.-M. Bastide

The early events in the interaction of two polyene (amphotericin B and nystatin) and five imidazole (clotrimazole, ketoconazole, miconazole, isoconazole, and econazole) antimycotics used at fungicidal concentrations with the surface of Candida albicans were studied by scanning electron microscopic examination of treated intact young yeast cells, treated spheroplasts, and spheroplasts liberated from treated young yeast cells. In all cases, treatment lasted 2 h. The polyenes passed through the yeast cell wall and interacted with the cytoplasmic membrane causing the spheroplasts to lose their characteristic spheric form and to liberate their contents. Clotrimazole caused the formation of numerous circular openings in the cytoplasmic membrane, but only when the agent was used to treat spheroplasts directly. Ketoconazole, miconazole, isoconazole, and econazole interacted with the cell wall causing formation of convolutions and wrinkles. The three imidazole derivatives that are structurally closely related, miconazole, isoconazole, and econazole, inhibited the enzyme-catalyzed release of spheroplasts from young yeast cells.


2016 ◽  
Vol 90 (4) ◽  
pp. 741-762 ◽  
Author(s):  
Brian L. Hoffman ◽  
Scott A. Hageman ◽  
Gregory D. Claycomb

AbstractAlthough Ptychodus teeth are well known in Late Cretaceous marine deposits in North America and Europe and a few specimens with jaw elements have been discovered, the taxonomic position of the shark genus Ptychodus is enigmatic due to the lack of preservation of diagnostic material other than teeth. These sharks possessed a pavement dentition suited to a diet of hard-shelled macroinvertebrates (durophagy), leading several studies to variously describe Ptychodus as a batoid, a hybodont shark, or a selachimorph. Members of the Selachimorpha share one dental synapomorphy, a triple-layered enameloid (TLE) consisting of an outer shiny-layered enameloid (SLE) of randomly oriented hydroxyapatite crystallites, a middle layer of parallel-bundled enameloid (PBE), and an inner layer of tangled-bundled enameloid (TBE). Batoids and hybodonts both have teeth with single crystallite enameloid (SCE). We examined teeth from Ptychodus collected from the Lincoln Limestone of the Greenhorn Formation of Barton County, Kansas, and compared their enameloid ultrastructure with that of a Carboniferous hybodontiform and the Cretaceous lamniform shark Squalicorax curvatus Williston, 1900. Scanning electron microscopic examination of Ptychodus shows that crystallite bundling in the form of a TLE is evident in these teeth. The PBE is most apparent at transverse enameloid ridges of Ptychodus teeth. Columns of dentine penetrate into the tooth enameloid, and the crystallites near the dentine are randomly oriented. These observations bolster the argument that Ptychodus is a genus of highly specialized selachimorph shark, rather than a hybodont or batoid.


1989 ◽  
Vol 3 (2) ◽  
pp. 234-240 ◽  
Author(s):  
N. Fouda ◽  
M. Caracatsanis ◽  
L. Hammarstrom

Very few reports have been published about the effects of diphosphonates on the cells and tissues of developing teeth. The present study was designed to investigate possible morphological changes in ameloblasts and odontoblasts and relate these changes to defects in the enamel surface of erupted teeth. Young rats were injected subcutaneously with single or multiple doses of HEDP or Cl2MDP (10 mg P/kg b.w.). Light microscopic examination of developing maxillary first molars showed that single injections of HEDP or Cl2MDP induced subameloblastic cysts between the secretory ameloblasts and the developing enamel. The ameloblastic lining of the cysts contained numerous calcified deposits. A few days after injection, hypoplasias were seen in the enamel in areas previously occupied by cysts. In the erupted teeth, scanning electron microscopic examination revealed enamel hypoplasias which were mainly localized on the mesial sides of the cusps. In addition to the previously mentioned disturbances, multiple injections resulted in more extensive cysts, some of which contained non-mineralized enamel matrix. Inhibition of the mineralization of dentin and alveolar bone was also noticed.


Sign in / Sign up

Export Citation Format

Share Document