Factors Involved in the Emergence and Persistence of Food-Borne Diseases†

1995 ◽  
Vol 58 (6) ◽  
pp. 696-708 ◽  
Author(s):  
JAMES L. SMITH ◽  
PINA M. FRATAMICO

In recent years, a number of bacteria, viruses, and parasites have emerged as food-borne pathogens and resulted in numerous food-borne disease outbreaks. These outbreaks have had a major impact in terms of loss of human lives and economic costs. Genetic changes in microorganisms resulting in increased virulence, changes in social attitudes and eating habits, changes in food production and distribution systems, an increase in the number of immunocompromised individuals, and improved pathogen-detection methods are some of the factors that have contributed to the emergence/recognition and persistence of food-borne pathogens. The causes leading to the emergence of new food-borne pathogens or the reemergence of pathogens involve the interaction of several factors. This review discusses in detail factors involved in the emergence/recognition and persistence of several bacterial, parasitic, viral, and virus-like agents associated with food-borne diseases of public-health significance.

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4916 ◽  
Author(s):  
Qiaoyun Wu ◽  
Yunzhe Zhang ◽  
Qian Yang ◽  
Ning Yuan ◽  
Wei Zhang

The vital importance of rapid and accurate detection of food borne pathogens has driven the development of biosensor to prevent food borne illness outbreaks. Electrochemical DNA biosensors offer such merits as rapid response, high sensitivity, low cost, and ease of use. This review covers the following three aspects: food borne pathogens and conventional detection methods, the design and fabrication of electrochemical DNA biosensors and several techniques for improving sensitivity of biosensors. We highlight the main bioreceptors and immobilizing methods on sensing interface, electrochemical techniques, electrochemical indicators, nanotechnology, and nucleic acid-based amplification. Finally, in view of the existing shortcomings of electrochemical DNA biosensors in the field of food borne pathogen detection, we also predict and prospect future research focuses from the following five aspects: specific bioreceptors (improving specificity), nanomaterials (enhancing sensitivity), microfluidic chip technology (realizing automate operation), paper-based biosensors (reducing detection cost), and smartphones or other mobile devices (simplifying signal reading devices).


2021 ◽  
Vol 5 ◽  
Author(s):  
Feifei Sun ◽  
Jing Zhang ◽  
Qingli Yang ◽  
Wei Wu

Abstract Due to the increasing number of food-borne diseases, more attention is being paid to food safety. Food-borne pathogens are the main cause of food-borne diseases, which seriously endanger human health, so it is necessary to detect and control them. Traditional detection methods cannot meet the requirements of rapid detection of food due to many shortcomings, such as being time-consuming, laborious or requiring expensive instrumentation. Quantum dots have become a promising nanotechnology in pathogens tracking and detection because of their excellent optical properties. New biosensor detection methods based on quantum dots are have been gradually developed due to their high sensitivity and high specificity. In this review, we summarize the different characteristics of quantum dots synthesized by carbon, heavy metals and composite materials firstly. Then, attention is paid to the principles, advantages and limitations of the quantum dots biosensor with antibodies and aptamers as recognition elements for recognition and capture of food-borne pathogens. Finally, the great potential of quantum dots in pathogen detection is summarized.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
H. Fukushima ◽  
S. Shimizu ◽  
Y. Inatsu

Yersinia enterocoliticaandY. pseudotuberculosiswhich can cause yersiniosis in humans and animals are thought to be significant food-borne pathogens and be important as hygiene indicator in food safety. The pathogenicY. enterocoliticaserotypes/biotypes are O:3/4 and 3 variant VP negative, O:5, 27/2, O:8/1b, and O:9/2, have been reported worldwide.Y. pseudotuberculosisis distributed less widely thanY. enterocolitica. Isolation methods usually involve selective and recovery enrichment of the food sample followed by plating onto selective media, confirmation of typical colonies and testing for virulence properties of isolated strains. Recently, DNA-based methods, such as PCR assays, have been developed to detect pathogenicY. enterocoliticaandY. pseudotuberculosisin foods more rapidly, and sensitivity than can be achieved by conventional culture methods. This paper reviews commercially available conventional and PCR-based procedures for the detection of pathogenicYersiniain food. These methods are effective as the isolation and detection methods to target pathogenicY. enterocoliticaandY. pseudotuberculosisin foods.


1997 ◽  
Vol 60 (11) ◽  
pp. 1341-1346 ◽  
Author(s):  
MARINA L. STEELE ◽  
W. BRUCE McNAB ◽  
CASE POPPE ◽  
MANSEL W. GRIFFITHS ◽  
SHU CHEN ◽  
...  

Raw (unpasteurized) milk can be a source of food-borne pathogens. Raw milk consumption results in sporadic disease outbreaks. Pasteurization is designed to destroy all bacterial pathogens common to raw milk, excluding spore-forming bacteria and possibly Mycobacterium paratuberculosis, but some people continue to drink raw milk, believing it to be safe. Current methods for assessing the bacteriological quality of raw milk, such as aerobic plate counts, are not usually designed to detect specific pathogens. The objective of this study was to estimate the proportion of pick-ups (loads of raw milk from a single farm bulk tank) from Ontario farm bulk tanks that contained Listeria monocytogenes. Salmonella spp., Campylobacter spp., and/or verotoxigenic Escherichia coli (VTEC). Samples from 1,720 pick-ups of raw milk were tested for the presence of these pathogens, and 47 L. monocytogenes, three Salmonella spp., eight Campylobacter spp., and 15 VTEC isolates were detected, representing 2.73, 0.17, 0.47, and 0.87% of milk samples, respectively. Estimates of the proportion of theoretical tanker truck loads of pooled raw milk contaminated with pathogens ranged from a low of 0.51 % of tankers containing raw milk from 3 bulk tanks being contaminated with Salmonella spp. to a high of 34.41 % of tankers containing raw milk from 10 bulk tanks being contaminated with at least one of the pathogens. Associations between the presence of pathogens and raw milk sample characteristics were investigated. The mean somatic cell count was higher among VTEC- or L. monocytogenes-positive samples, and the mean aerobic plate count was found to be higher among L. monocytogenes-positive samples. These results confirm the presence of bacterial food pathogens in raw milk and emphasize the importance of continued diligence in the application of hygiene programs within dairies and the separation of raw milk from pasteurized milk and milk products.


2016 ◽  
Vol 16 (3) ◽  
pp. 623-639 ◽  
Author(s):  
Ewa Zastempowska ◽  
Jan Grajewski ◽  
Magdalena Twarużek

AbstractThe aim of the present review is to highlight the threats to human health posed by consumption of milk and dairy products. The interest in drinking raw milk has been growing in some societies as many people believe it has health benefits. Raw milk is promoted as ‘health food’ despite the fact that it poses a realistic microbiological hazard for the consumers’ health or life. Food-borne disease outbreaks associated withCampylobacterspp.,Salmonellaspp., shigatoxin-producingEscherichia coli,Brucella melitensis,Mycobacterium bovisand tick-borne encephalitis virus have been traced to the consumption of raw milk, however, many other microorganisms that can be present in milk are considered as potential food-borne pathogens to humans. The other common causative agents in food-borne disease outbreaks are bacterial toxins produced byBacillus,ClostridiumandStaphylococcusspp. Some of the milk pathogens harbour antimicrobial resistant genes, which can be transferred to commensal bacteria. Most dangerous are methicillin-resistantStaphylococcus aureusand extended spectrum beta lactamase/AmpC gene-carrying bacteria from the family ofEnterobacteriaceae, which might negatively affect the treatment of infections in humans. Fungi are not considered as food-borne pathogens for humans, however their secondary metabolites, mycotoxins, constitute a potential threat to public health. Mycotoxins or their metabolites detected so far in milk samples include aflatoxins, ochratoxin A, zearalenone and its metabolites, fumonisins, de-epoxy-deoxynivalenol and cyclopiazonic acid.


2010 ◽  
Vol 31 (13) ◽  
pp. 2137-2153 ◽  
Author(s):  
Gi Won Shin ◽  
Hee Sung Hwang ◽  
Boram Chung ◽  
Gyoo Yeol Jung

Sign in / Sign up

Export Citation Format

Share Document