Effect of Selected Generally Recognized as Safe Preservative Sprays on Growth of Listeria monocytogenes on Chicken Luncheon Meat

2002 ◽  
Vol 65 (5) ◽  
pp. 794-798 ◽  
Author(s):  
MAHBUB ISLAM ◽  
JINRU CHEN ◽  
MICHAEL P. DOYLE ◽  
MANJEET CHINNAN

The ability of selected generally recognized as safe (GRAS) chemical preservatives to reduce populations or inhibit growth of Listeria monocytogenes on chicken luncheon meat was evaluated. Slices of luncheon meat were treated by evenly spraying onto their surfaces 0.2 ml of a solution of one of four preservatives (sodium benzoate, sodium propionate, potassium sorbate, and sodium diacetate) at one of three different concentrations (15, 20, or 25% [wt/vol]). Each slice was then surface inoculated with a five-strain mixture of 105 CFU of L. monocytogenes per ml, held at 4, 13, or 22°C, and assayed for L. monocytogenes immediately after inoculation and at 3, 7, 10, and 14 days of storage. Initial reductions of L. monocytogenes populations ranged from 0.78 to 1.32 log10 CFU g−1 at day 0 for sodium benzoate– or sodium diacetate–treated meat, whereas reductions for the sodium propionate or potassium sorbate treatments were only 0.14 to 0.36 log10 CFU g−1. After 14 days of storage at 4°C, L. monocytogenes populations on all treated slices were 1.5 to 3 log10 CFU g−1 less than on the untreated slices. At 13°C and after 14 days of storage, L. monocytogenes populations were 3.5 and 5.2 log10 CFU g−1 less on luncheon meat slices treated with 25% sodium benzoate or 25% sodium diacetate, respectively, and ca. 2 log10 CFU g−1 less when treated with 25% sodium propionate or 25% potassium sorbate than on untreated control slices. Only sodium diacetate was highly inhibitory to L. monocytogenes on meat slices held at 22°C for 7 days or longer. Untreated luncheon meat held at 22°C was visibly spoiled within 10 days, whereas there was no evidence of visible spoilage on any treated luncheon meat at 14 days of storage.

2002 ◽  
Vol 65 (9) ◽  
pp. 1411-1416 ◽  
Author(s):  
MAHBUB ISLAM ◽  
JINRU CHEN ◽  
MICHAEL P. DOYLE ◽  
MANJEET CHINNAN

Generally-recognized-as-safe chemicals applied to the surfaces of turkey frankfurters were evaluated for their ability to reduce populations of or inhibit the growth of Listeria monocytogenes. Frankfurters were treated prior to inoculation by dipping for 1 min in a solution of one of four preservatives (sodium benzoate, sodium propionate, potassium sorbate, and sodium diacetate) at three different concentrations (15, 20, and 25% [wt/vol]), with <0.3% of the preservative being present for each frankfurter. Subsequently, 0.1 ml of a five-strain mixture of L. monocytogenes (106 CFU/ml) was used to surface inoculate each frankfurter separately in a sterile stomacher bag. Inoculated frankfurter bags were held at 4, 13, and 22°C, and L. monocytogenes cells were enumerated at 0, 3, 7, 10, and 14 days of storage. The results of this study revealed that at all three concentrations of all four preservatives, the initial populations of L. monocytogenes decreased immediately by 1 to 2 log10 CFU/g. After 14 days of storage at 4°C, L. monocytogenes counts for all treated frankfurters were 3 to 4 log10 CFU/g less than those for the untreated frankfurters. After 14 days of storage at 13°C, L. monocytogenes counts for frankfurters treated with 25% sodium benzoate or 25% sodium diacetate were 3.5 to 4.5 log10 CFU/g less than those for untreated frankfurters, and those for frankfurters treated with 25% sodium propionate or 25% potassium sorbate were 2.5 log10 CFU/g less than those for untreated frankfurters. In all instances, the degree of growth inhibition was directly proportional to the concentration of the preservative. Only frankfurters treated with 25% sodium diacetate or sodium benzoate were significantly inhibitory to L. monocytogenes when held at 22°C for 7 days or longer. Interestingly, the untreated frankfurters held at 22°C were spoiled within 7 days, with copious slime formation, whereas there was no evidence of slime on any treated frankfurters after 14 days of storage.


2007 ◽  
Vol 70 (10) ◽  
pp. 2306-2312 ◽  
Author(s):  
KATHLEEN A. GLASS ◽  
LINDSEY M. MCDONNELL ◽  
ROB C. RASSEL ◽  
KRISTINE L. ZIERKE

The objective of this study was to identify concentrations of sorbate, benzoate, and propionate that prevent the growth of Listeria monocytogenes on sliced, cooked, uncured turkey breast and cured ham. Sixteen test formulations plus a control formulation for each product type were manufactured to include potassium sorbate, sodium benzoate, or sodium propionate, used alone and combined (up to 0.3% [wt/wt]), or with sodium lactate–sodium diacetate combinations. Products were inoculated with L. monocytogenes (5 log CFU/100-g package) and stored at 4, 7, or 10°C for up to 12 weeks, and triplicate samples per treatment were assayed biweekly by plating on modified Oxford agar. Data showed that 0.1% benzoate, 0.2% propionate, 0.3% sorbate, or a combination of 1.6% lactate with 0.1% diacetate prevented the growth of L. monocytogenes on ham stored at 4°C for 12 weeks, compared with greater than a 1-log increase at 4 weeks for the control ham without antimicrobials. When no nitrite was included in the formulation, 0.2% propionate used alone, a combination of 0.1% propionate with 0.1% sorbate, or a combination of 3.2% lactate with 0.2% diacetate was required to prevent listerial growth on the product stored at 4°C for 12 weeks. Inhibition was less pronounced when formulations were stored at abuse temperatures. When stored at 7°C, select treatments delayed listerial growth for 4 weeks but supported significant growth at 8 weeks. All treatments supported more than a 1-log increase in listerial populations when stored at 10°C for 4 weeks. These results verify that antimycotic agents inhibit the growth of L. monocytogenes on ready-to-eat meats but are more effective when used in combination with nitrite.


2007 ◽  
Vol 70 (1) ◽  
pp. 214-217 ◽  
Author(s):  
KATHLEEN GLASS ◽  
DAWN PRESTON ◽  
JEFFREY VEESENMEYER

The control of Listeria monocytogenes was evaluated with ready-to-eat uncured turkey and cured pork-beef bologna with combinations of benzoate, propionate, and sorbate. Three treatments of each product type were formulated to include control with no antimycotic agents; a combination of 0.05% sodium benzoate and 0.05% sodium propionate; and a combination of 0.05% sodium benzoate and 0.05% potassium sorbate. Ingredients were mixed, stuffed into fibrous, moisture-impermeable casings, cooked to an internal temperature of 73.9°C, chilled, and sliced. The final product was surface inoculated with L. monocytogenes (4 log CFU per package), vacuum packaged, and stored at 4°C for 13 weeks. The antimycotic addition to the second and third uncured turkey treatments initially slowed the pathogen growth rate compared with the control, but populations of L. monocytogenes increased 5 log or more by 6 weeks. In contrast, the addition of antimycotic combinations in the cured bologna prevented growth of L. monocytogenes during the 13-week storage period at 4°C, compared with a more than 3.5-log increase in listerial populations in the control bologna, to which no antimicrobial agents had been added. These data suggest that low concentrations of antimycotic agents can prevent L. monocytogenes growth in certain ready-to-eat meats. Additional research is needed to define the levels needed to prevent growth of L. monocytogenes in high-moisture cured and uncured ready-to-eat meat and poultry and for gaining governmental approval for their use in such formulations.


2012 ◽  
Vol 75 (5) ◽  
pp. 959-965 ◽  
Author(s):  
TOMÁS SUBILS ◽  
VIRGINIA AQUILI ◽  
GUILLERMO EBNER ◽  
CLAUDIA BALAGUÉ

Toxin synthesis by Shiga toxin–producing Escherichia coli (STEC) appears to be coregulated through the induction of the integrated bacteriophages that encode the toxin genes. These phages might be the principal means for the dissemination and release of Shiga toxins. We evaluated the effect of three common food preservatives, potassium sorbate, sodium benzoate, and sodium propionate, on the propagation of the phages and Shiga toxins. We tested each preservative at four concentrations, 1, 1.25, 2.5, and 5 mg/ml, both on free phages and on lysogenic phages in bacteria. We also evaluated the expression of a lambdoid phage, which was exposed to increasing concentrations of preservatives, by measuring β-galactosidase activity from SPC105, a transductant strain. Furthermore, we tested the effect of the preservatives on cytotoxigenic activity of Shiga toxin on Vero cells. We detected an increase of the inhibitory effect of the phage lytic activity, both in lysogenic and free phages, as the preservative concentration increased. However, the inhibition was higher on the lysogenic phages release than on free phages. Sodium benzoate and potassium sorbate were about equal at inhibiting phages; they were more effective than sodium propionate. A significant decrease of lacZ expression, encoded in a lambda phage, was observed. We also found a reduction in Shiga toxin titer caused by exposure of E. coli O157:H7 to 5 mg/ml sodium benzoate or potassium sorbate. These results imply that these three preservatives, used to inhibit microbial spoilage of foods, also act to inhibit lytic activity and dispersion of a phage carrying the gene encoding powerful Shiga cytotoxins. Also notable was the inactivation of Shiga toxin activity, although this effect was detected using concentrations of preservatives greater than those allowed by the Argentine Food Code.


2018 ◽  
Vol 81 (12) ◽  
pp. 1921-1928 ◽  
Author(s):  
CHRISTINA K. CARSTENS ◽  
JOELLE K. SALAZAR ◽  
VRIDDI M. BATHIJA ◽  
SARTAJ S. NARULA ◽  
PEIEN WANG ◽  
...  

ABSTRACT A multistate listeriosis outbreak associated with caramel apples from 2014 to 2015 prompted research on the survival of Listeria monocytogenes in fresh apples and caramel apples. Research indicated that stem end–inoculated caramel apples with stick insertion allowed for the survival and growth of L. monocytogenes at both refrigeration and ambient temperatures. This study aimed to assess the effectiveness of chemical preservatives as pretreatments for the wooden stick component to reduce L. monocytogenes loads in stem end–inoculated caramel apples during storage. Wooden sticks were pretreated with 1, 3, or 5% ascorbic acid (vitamin C), Nisaplin (2.5% nisin), potassium sorbate, and sodium benzoate and then inoculated with L. monocytogenes at 7 log CFU per stick. After storage at 25°C, the pathogen was reduced most effectively by the ascorbic acid pretreatments. At all three ascorbic acid concentrations tested, L. monocytogenes levels were reduced below the level of enumeration (2.5 log CFU per apple) at 24 h and were no longer detectable by enrichment after 72 h. Ascorbic acid (5, 10, and 20%) and potassium sorbate (10, 20, 30, and 40%) were further tested as wooden stick pretreatments for pathogen reduction on stem end–inoculated caramel apples stored at 5 and 25°C. The 40% potassium sorbate solution at 25°C was the most effective pretreatment condition in caramel apples and demonstrated a 3.1-log CFU per apple overall decrease in L. monocytogenes population levels after 216 h. Pretreatment of the wooden stick component of a caramel apple with potassium sorbate may be a viable preventive measure to reduce postprocess L. monocytogenes population levels and hence reduce consumer risk associated with caramel apple consumption.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Joyce Ndunge Musyoka ◽  
George Ooko Abong' ◽  
Daniel Mahuga Mbogo ◽  
Richard Fuchs ◽  
Jan Low ◽  
...  

Orange Fleshed Sweet Potato (OFSP) puree, a versatile food ingredient, is highly perishable limiting its use in resource constrained environments. It is therefore important to develop shelf-stable puree. A challenge test study was carried out to determine the effect of combinations of chemical preservatives and acidification on microbial growth in stored puree. Puree was prepared and treated as follows: control (A); 0.05% potassium sorbate+0.05% sodium benzoate+1% citric acid (B); 0.1% potassium sorbate+0.1% sodium benzoate+1% citric acid (C); 0.2% potassium sorbate+0.2% sodium benzoate+1% citric acid (D); 1% citric acid (E). Samples were inoculated with Escherichia coli and Staphylococcus aureus at levels of 5.2 x 109 cfu/100g and 1.5 x 109 cfu/100g, respectively, before being evaluated during storage for 10 weeks at prevailing ambient temperature (15-25°C) and refrigeration temperature (4°C). Total aerobic counts, yeasts, and molds were also evaluated. E. coli and S. aureus counts declined significantly (p<0.05) by 4 log cycles in all puree treatments except for control and puree with only citric acid. Total viable count, yeasts, and molds were completely inhibited except for puree with only citric acid. Combination of chemical preservatives and acidification is effective in inhibiting pathogens and spoilage microorganisms in sweet potato puree.


2008 ◽  
Vol 71 (7) ◽  
pp. 1386-1392 ◽  
Author(s):  
D. L. SEMAN ◽  
S. C. QUICKERT ◽  
A. C. BORGER ◽  
J. D. MEYER

The effect of sodium benzoate (0.08 to 0.25%) in combination with different concentrations of sodium diacetate (0.05 to 0.15%) and NaCl (0.8 to 2%) and different finished product moisture (55 to 75%) on the growth of Listeria monocytogenes in ready-to-eat meat products was evaluated using a central composite design over 18 weeks of storage at 4°C. The effects of these factors on time to growth were analyzed using a time-to-failure regression method. All main effects were significant except product moisture, which was significant when included in the two- and three-way interactions (P &lt; 0.05). Sodium benzoate was more effective (lengthening time to growth) when used with increasing concentrations of sodium diacetate and salt and decreasing finished product moisture. The model indicated that low-moisture products, e.g., bologna or wieners, could have time-to-growth values longer than 18 weeks if they were formulated with 0.1% sodium benzoate and 0.1% sodium diacetate. Time to growth in high-moisture products, e.g., ham or cured turkey breast at 75% moisture, was predicted to be much shorter for the same basic formulation (0.1% sodium benzoate and 0.1% sodium diacetate). Consequently, high-moisture ready-to-eat products in which sodium benzoate is limited to 0.1% (current standard for generally recognized as safe) may need additional ingredients to effectively inhibit growth of L. monocytogenes.


2013 ◽  
Vol 5 (2) ◽  
pp. 23-28 ◽  
Author(s):  
MK Alam ◽  
MM Hoque ◽  
S Morshed ◽  
SMS Shahriar ◽  
A Begum

This study was done to analyse the effect of chemical preservatives on watermelon juice. The samples were; pasteurized watermelon juice (T1), pasteurized watermelon juice +20% sucrose (T2), pasteurized watermelon juice +0.1% sodium benzoate (T3), pasteurized watermelon juice +20% sucrose +0.1% sodium benzoate (T4), pasteurized watermelon juice +0.1% potassium sorbate (T5), pasteurized watermelon juice +20% sucrose+0.1% potassium sorbate (T6), pasteurized watermelon juice +0.05% sodium benzoate +0.05% potassium sorbate (T7), pasteurized watermelon juice +20% sucrose +0.05% sodium benzoate +0.05% potassium sorbate (T8), pasteurized watermelon juice +0.1% sodium benzoate +0.1% potassium sorbate (T9), pasteurized watermelon juice +20% sucrose +0.1% sodium benzoate +0.1% potassium sorbate (T10). The samples were stored at 4 - 15°C for three months. T1 and T2 were rejected soon due to spoilage. Minimum ascorbic acid content was reduced in T10 (23.85%), while maximum in T4 (44.44%). Minimum acidity was increased in T10 (50.00%), while maximum in T1 (107.69%). Treatments T10, T9 T8 and T6 were found most acceptable in maintaining the sensory characteristics compared to others during storage. Among all the treated juice sample T10 was most effective in maintaining the sensory and nutritional quality during storage.DOI: http://dx.doi.org/10.3329/jesnr.v5i2.14597 J. Environ. Sci. & Natural Resources, 5(2): 23-28 2012


2012 ◽  
Vol 12 (53) ◽  
pp. 6409-6423
Author(s):  
Z Ashagrie ◽  
◽  
D Abate

Mould spoilage is a serious problem that affect s the shelf life of injera , the staple Ethiopian fermented bread. Injera is made from teff ( Eragrostis tef ) but other cereals may also be used in combination with teff. About two- third of Ethiopian diet consists of injera and it accounts for about two -third s of the daily protein intake of the Ethiopian population. I njera has a high nutritional value, as it is rich in calcium and iron. Unfortunately, injera has a shelf life of only 3-4 days essentially due to mould spoilage. The use of weak organic acid as preservative is allowed in acidic foods, primarily as mould inhibitor s. In this study, the effect of chemical preservatives such as benzoic acid, sodium benzoate, potassium sorbate and calcium propionate were investigated to prolong shelf life of injera . The preservatives were added immediately before baking at the concentration of 0.1% of benzoic acid, 0.1% sodium benzoate, 0.2% of potassium sorbate, 0.3% of calcium propionate and 0.2% blend of the four as recommended by Food and Drug Administration of USA. Three fungal species: Aspergillus niger , Penicillium sp and Rhizopus sp were found to be responsible for injera spoilage. Penicillium and Rhizopus were more dominant at storage temperature of between 16- 20 0 C, while Aspergillus niger was found to be more dominant at higher temperature of 25 -32 0 C. Injera samples had a pH and moisture content between 3.38- 3.45 and 62- 65%, respectively. Anti -fungal activities of the preservatives investigated significantly prolonged the shelf life of injera for up to12 days. It was found out that the effectiveness of preservation was ranked as sodium benzoate>benzoic acid>potassium sorbate>blend>calcium propionate showing that benzoate and benzoic acid are the most effective. The outcome of the research has a significant implication in food security, energy utilization and a significant reduction in the amount of time used by women to produce injera


2001 ◽  
Vol 64 (11) ◽  
pp. 1722-1729 ◽  
Author(s):  
JOHN SAMELIS ◽  
JOHN N. SOFOS ◽  
MINDY L. KAIN ◽  
JOHN A. SCANGA ◽  
KEITH E. BELK ◽  
...  

Postprocessing contamination of cured meats with Listeria monocytogenes has become a major concern for the meat processing industry and an important food safety issue. This study evaluated aqueous dipping solutions of organic acids (2.5 or 5% lactic or acetic acid) or salts (2.5 or 5% sodium acetate or sodium diacetate, 5 or 10% sodium lactate, 5% potassium sorbate or potassium benzoate) to control L. monocytogenes on sliced, vacuum-packaged bologna stored at 4°C for up to 120 days. Organic acids and salts were applied by immersing (1 min) in each solution inoculated (102 to 103 CFU/cm2) slices of bologna before vacuum packaging. Growth of L. monocytogenes (PALCAM agar) on inoculated bologna slices without treatment exceeded 7 log CFU/cm2 (P &lt; 0.05) at 20 days of storage. No significant (P &gt; 0.05) increase in L. monocytogenes populations occurred on bologna slices treated with 2.5 or 5% acetic acid, 5% sodium diacetate, or 5% potassium benzoate from day 0 to 120. Products treated with 5% potassium sorbate and 5% lactic acid were stored for 50 and 90 days, respectively, before a significant (P &lt; 0.05) increase in L. monocytogenes occurred. All other treatments permitted growth of the pathogen at earlier days of storage, with sodium lactate (5 or 10%) permitting growth within 20 to 35 days. Extent of bacterial growth on trypticase soy agar plus 0.6% yeast extract (TSAYE) was similar to that on PALCAM, indicating that the major part of total bacteria grown on TSAYE agar plates incubated at 30°C was L. monocytogenes. Further studies are needed to evaluate organic acids and salts as dipping solutions at abusive temperatures of retail storage, to optimize their concentrations in terms of product sensory quality, and to evaluate their effects against various other types of microorganisms and on product shelf life. In addition, technologies for the commercial application of postprocessing antimicrobial solutions in meat plants need to be developed.


Sign in / Sign up

Export Citation Format

Share Document