Combined Effect of Carvacrol and Packaging Conditions on Radiosensitivity of Escherichia coli and Salmonella Typhi in Ground Beef

2005 ◽  
Vol 68 (12) ◽  
pp. 2567-2570 ◽  
Author(s):  
F. CHIASSON ◽  
J. BORSA ◽  
M. LACROIX

This study was undertaken to evaluate the effect of 1.0% carvacrol and 0.1% tetrasodium pyrophosphate on the radiation D10 of Escherichia coli and Salmonella Typhi added to ground beef at a concentration of 105 CFU/g. The ground beef was then packaged under four different atmosphere conditions: air (78.1% N2, 20.9% O2, 0.036% CO2), 100% CO2, modified atmosphere (60% O2, 30% CO2, 10% N2) and vacuum. Samples were irradiated at doses of 0.1 to 0.6 kGy for E. coli and 0.5 to 2.0 kGy for Salmonella Typhi. Radiation D10-values of 0.126 and 0.526 kGy were observed for E. coli and Salmonella Typhi, respectively, when meat was packed under air. When meat was packed under modified atmosphere conditions, the radiation D10-values for E. coli and Salmonella Typhi were 0.086 and 0.221 kGy, respectively. The addition of carvacrol and tetrasodium pyrophosphate and the use of modified atmosphere packaging reduced the radiation D10-value from 0.126 to 0.046 kGy for E. coli and from 0.526 to 0.053 kGy for Salmonella Typhi. Under vacuum and 100% CO2 conditions, the radiation D10 reduction was not as great as that for the modified atmosphere regardless of the presence or absence of carvacrol and tetrasodium pyrophosphate.

2008 ◽  
Vol 71 (3) ◽  
pp. 516-521 ◽  
Author(s):  
M. TURGIS ◽  
J. BORSA ◽  
M. MILLETTE ◽  
S. SALMIERI ◽  
M. LACROIX

Twenty-six different essential oils were tested for their efficiency to increase the relative radiosensitivity of Escherichia coli and Salmonella Typhi in medium-fat ground beef (23% fat). Ground beef was inoculated with E. coli O157:H7 or Salmonella (106 CFU/g), and each essential oil or one of their main constituents was added separately at a concentration of 0.5% (wt/wt). Meat samples (10 g) were packed under air or under modified atmosphere and irradiated at doses from 0 to 1 kGy for the determination of the D10-value of E. coli O157:H7, and from 0 to 1.75 kGy for the determination of the D10-value of Salmonella Typhi. Depending on the compound tested, the relative radiation sensitivity increased from 1 to 3.57 for E. coli O157:H7 and from 1 to 3.26 for Salmonella Typhi. Addition of essential oils or their constituents before irradiation also reduced the irradiation dose needed to eliminate both pathogens. In the presence of Chinese cinnamon or Spanish oregano essential oils, the minimum doses required to eliminate the bacteria were reduced from 1.2 to 0.35 and from 1.4 to 0.5 for E. coli O157:H7 and Salmonella Typhi, respectively. Cinnamon, oregano, and mustard essential oils were the most effective radiosensitizers.


2004 ◽  
Vol 67 (6) ◽  
pp. 1157-1162 ◽  
Author(s):  
F. CHIASSON ◽  
J. BORSA ◽  
B. OUATTARA ◽  
M. LACROIX

The radiosensitization of two pathogenic bacteria, Escherichia coli and Salmonella Typhi, was evaluated in the presence of thyme and its principal essential oil constituents (carvacrol and thymol) in ground beef. Ground beef was inoculated with E. coli or Salmonella Typhi (105 CFU/g), and each compound was added separately at various concentrations (0 to 3.5%, wt/wt). The antimicrobial potential of carvacrol, thymol, and thyme was evaluated in unirradiated meat by determining the MIC in percentage (wt/wt) after 24 h of storage at 4 ± 1°C. Results showed a MIC of 0.88 ± 0.12%, 1.14 ± 0.05%, and 2.33 ± 0.32% for E. coli in the presence of carvacrol, thymol, and thyme, respectively. MICs of 1.15 ± 0.02%, 1.60 ± 0.01%, and 2.75 ± 0.17% were observed for Salmonella Typhi in the presence of the same compounds, respectively. The best antimicrobial compound (i.e., carvacrol) was selected and added to the sterilized ground beef along with ascorbic acid (0.5%, wt/wt) and tetrasodium pyrophosphate (0.1%, wt/wt). Meat samples (10 g) were packed in air and then irradiated in a 60Co irradiator at doses of 0 to 0.7 kGy for the determination of E. coli radiation D10 and 0 to 2.25 kGy for the determination of Salmonella Typhi radiation D10. Addition of carvacrol increased the relative sensitivity of both bacteria 2.2 times. The radiation D10 was reduced from 0.126 ± 0.0039 to 0.057 ± 0.0015 kGy for E. coli and from 0.519 ± 0.0308 to 0.235 ± 0.0158 kGy for Salmonella Typhi. The addition of tetrasodium pyrophosphate did not affect significantly (P > 0.05) the radiosensitization of either bacterium. However, the presence of ascorbic acid in the media reduced significantly (P ≤ 0.05) the radiosensitivity of both bacteria. An additive effect of carvacrol addition and packaging under modified atmosphere conditions (60% O2–30% CO2–10% N2) was also observed on bacterial radiosensitization at 4°C. Compared with the control packed under air, modified atmosphere packaging conditions in the presence of carvacrol and tetrasodium pyrophosphate improved the relative sensitivity of E. coli by 2.7 times and Salmonella Typhi by 9.9 times.


Author(s):  
Özgür Çadırcı ◽  
Ali Gücükoğlu ◽  
Göknur Terzi Güzel ◽  
Tolga Uyanık ◽  
Abdulaziz Abdulahi ◽  
...  

Shiga-like toxin producing Escherichia coli is still an important public issue which causes extremely dangerous health problems. This study was planned in order to examine the inhibitory effect of Modified Atmosphere Packaging application on E. coli O157 and O157: H7. The purposes of the present study were to detect E. coli O157 and O157: H7 strains from ground and cubed beef. A total of 100 MAP cattle meat products (50 minced meat, 50 meat cubes) were collected from the markets and butchers in Samsun province between May and October 2013. According to results, 1(1/50-2%) E. coli O157 and 1(1/50-2%) E. coli O157: H7 strains isolated from 50 ground beef samples, while 1 (1/50-2%) E. coli O157 strain was identified from 50 cubed beef samples. It was determined that E. coli O157 isolate obtained from the MAP ground beef carried stx1, stx2 genes; E. coli O157: H7 isolate carried stx1, stx2, eaeA and hylA genes while E. coli O157 isolate obtained from the MAP cubed meat only carried the stx2 gene. In antibiogram test, both E. coli O157 isolates were resistant to streptomycin and one E. coli O157: H7 isolate was resistant to streptomycin, cephalothin and tetracycline. As a consequence; in order to protect public health, products should be kept in proper hygienic and technical conditions during sale and storage and use of uncontrolled antibiotics should be avoided.


2011 ◽  
Vol 74 (12) ◽  
pp. 2018-2023 ◽  
Author(s):  
LI L. KUDRA ◽  
JOSEPH G. SEBRANEK ◽  
JAMES S. DICKSON ◽  
AUBREY F. MENDONCA ◽  
ELAINE M. LARSON ◽  
...  

The efficacy of controlling Escherichia coli O157:H7 in ground beef patties by combining irradiation with vacuum packaging or modified atmosphere packaging (MAP) was investigated. Fresh ground beef patties were inoculated with a five-strain cocktail of E. coli O157:H7 at 5 log CFU/g. Single patties, packaged with vacuum or high-CO2 MAP (99.6% CO2 plus 0.4% CO), were irradiated at 0 (control), 0.5, 1.0, or 1.5 kGy. The D10-value for this pathogen was 0.47 ± 0.02 kGy in vacuum and 0.50 ± 0.02 kGy in MAP packaging. Irradiation with 1.5 kGy reduced E. coli O157:H7 by 3.0 to 3.3 log, while 0.5 and 1.0 kGy achieved reductions of 0.7 to 1.0, and 2.0 to 2.2 log, respectively. After irradiation, the numbers of survivors of this pathogen on beef patties in refrigerated storage (4°C) did not change significantly for 6 weeks. Temperature abuse (at 25°C) resulted in growth in vacuum-packaged patties treated with 0.5 and 1.5 kGy, but no growth in MAP packages. This study demonstrated that combining irradiation with MAP was similar in effectiveness to irradiation with vacuum packaging for control of E. coli O157:H7 in ground beef patties during refrigerated storage. However, high-CO2 MAP appeared to be more effective after temperature abuse.


2011 ◽  
Vol 74 (5) ◽  
pp. 718-726 ◽  
Author(s):  
MANAN SHARMA ◽  
SUDESNA LAKSHMAN ◽  
SEAN FERGUSON ◽  
DAVID T. INGRAM ◽  
YAGUANG LUO ◽  
...  

Fresh-cut leafy greens contaminated with Escherichia coli O157:H7 have caused foodborne outbreaks. Packaging conditions, coupled with abusive storage temperatures of contaminated lettuce, were evaluated for their effect on the potential virulence of E. coli O157:H7. Shredded lettuce was inoculated with 5.58 and 3.98 log CFU E. coli O157:H7 per g and stored at 4 and 15°C, respectively, for up to 10 days. Lettuce was packaged under treatment A (modified atmosphere packaging conditions used for commercial fresh-cut produce, in gas-permeable film with N2), treatment B (near–ambient air atmospheric conditions in a gas-permeable film with microperforations), and treatment C (high-CO2 and low-O2 conditions in a gas-impermeable film). E. coli O157:H7 populations from each treatment were determined by enumeration of numbers on MacConkey agar containing nalidixic acid. RNA was extracted from packaged lettuce for analysis of expression of virulence factor genes stx2, eae, ehxA, iha, and rfbE. E. coli O157:H7 populations on lettuce at 4°C under all treatments decreased, but most considerably so under treatment B over 10 days. At 15°C, E. coli O157:H7 populations increased by at least 2.76 log CFU/g under all treatments. At 15°C, expression of eae and iha was significantly greater under treatment B than it was under treatments A and C on day 3. Similarly, treatment B promoted significantly higher expression of stx2, eae, ehxA, and rfbE genes on day 10, compared with treatments A and C at 15°C. Results indicate that storage under near–ambient air atmospheric conditions can promote higher expression levels of O157 virulence factors on lettuce, and could affect the severity of E. coli O157:H7 infections associated with leafy greens.


2001 ◽  
Vol 64 (11) ◽  
pp. 1661-1666 ◽  
Author(s):  
M. UYTTENDAELE ◽  
E. JOZWIK ◽  
A. TUTENEL ◽  
L. DE ZUTTER ◽  
J. URADZINSKI ◽  
...  

The present study examined the effect of pH-independent acid resistance of Escherichia coli O157:H7 on efficacy of buffered lactic acid to decontaminate chilled beef tissue. A varied level of acid resistance was observed among the 14 strains tested. Eight strains were categorized as acid resistant, four strains as acid sensitive, and two strains demonstrated acid-inducible acid resistance. The survival of an acid-resistant (II/45/4) and acid-sensitive (IX/8/16) E. coli O157:H7 strain on chilled beef tissue treated with 1 and 2% buffered lactic acid, sterile water, or no treatment (control) was followed. A gradual reduction of E. coli O157:H7 was noticed during the 10 days of storage at 4°C for each of the treatments. Decontamination with 1 and 2% buffered lactic acid did not appreciably affect the pathogen. Differences in the pH-independent acid resistance of the strains had no effect on the efficacy of decontamination. The effect of modified atmosphere packaging (MAP) on survival of E. coli O157:H7 in red meat was also studied. MAP (40% CO2/60% N2) or vacuum did not significantly influence survival of E. coli O157:H7 on inoculated sliced beef (retail cuts) meat compared to packing in air. The relative small outgrowth of lactic acid bacteria during storage under vacuum for 28 days did not affect survival of E. coli O157:H7. Neither lactic acid decontamination nor vacuum or MAP packaging could enhance reduction of E. coli O157:H7 on beef, thus underlining the need for preventive measures to control the public health risk of E. coli O157:H7.


1999 ◽  
Vol 122 (2) ◽  
pp. 185-192 ◽  
Author(s):  
J. TUTTLE ◽  
T. GOMEZ ◽  
M. P. DOYLE ◽  
J. G. WELLS ◽  
T. ZHAO ◽  
...  

Between November 1992 and February 1993, a large outbreak of Escherichia coli O157[ratio ]H7 infections occurred in the western USA and was associated with eating ground beef patties at restaurants of one fast-food chain. Restaurants that were epidemiologically linked with cases served patties produced on two consecutive dates; cultures of recalled ground beef patties produced on those dates yielded E. coli O157[ratio ]H7 strains indistinguishable from those isolated from patients, confirming the vehicle of illness. Seventy-six ground beef patty samples were cultured quantitatively for E. coli O157[ratio ]H7. The median most probable number of organisms was 1·5 per gram (range, <0·3–15) or 67·5 organisms per patty (range, <13·5–675). Correlation of the presence of E. coli O157[ratio ]H7 with other bacterial indicators yielded a significant association between coliform count and the presence of E. coli O157[ratio ]H7 (P=0·04). A meat traceback to investigate possible sources of contamination revealed cattle were probably initially colonized with E. coli O157[ratio ]H7, and that their slaughter caused surface contamination of meat, which once combined with meat from other sources, resulted in a large number of contaminated ground beef patties. Microbiological testing of meat from lots consumed by persons who became ill was suggestive of an infectious dose for E. coli O157[ratio ]H7 of fewer than 700 organisms. These findings present a strong argument for enforcing zero tolerance for this organism in processed food and for markedly decreasing contamination of raw ground beef. Process controls that incorporate microbiological testing of meat may assist these efforts.


Sign in / Sign up

Export Citation Format

Share Document