Effect of Sampling Plans on the Risk of Escherichia coli O157 Illness

2015 ◽  
Vol 78 (7) ◽  
pp. 1370-1374
Author(s):  
ANDREAS KIERMEIER ◽  
JOHN SUMNER ◽  
IAN JENSON

Australia exports about 150,000 to 200,000 tons of manufacturing beef to the United States annually. Each lot is tested for Escherichia coli O157 using the N-60 sampling protocol, where 60 small pieces of surface meat from each lot of production are tested. A risk assessment of E. coli O157 illness from the consumption of hamburgers made from Australian manufacturing meat formed the basis to evaluate the effect of sample size and amount on the number of illnesses predicted. The sampling plans evaluated included no sampling (resulting in an estimated 55.2 illnesses per annum), the current N-60 plan (50.2 illnesses), N-90 (49.6 illnesses), N-120 (48.4 illnesses), and a more stringent N-60 sampling plan taking five 25-g samples from each of 12 cartons (47.4 illnesses per annum). While sampling may detect some highly contaminated lots, it does not guarantee that all such lots are removed from commerce. It is concluded that increasing the sample size or sample amount from the current N-60 plan would have a very small public health effect.

2001 ◽  
Vol 84 (3) ◽  
pp. 737-751 ◽  
Author(s):  
Charles B Bird ◽  
Rebecca J Hoerner ◽  
Lawrence Restaino ◽  
G Anderson ◽  
W Birbari ◽  
...  

Abstract Four different food types along with environmental swabs were analyzed by the Reveal for E. coli O157:H7 test (Reveal) and the Bacteriological Analytical Manual (BAM) culture method for the presence of Escherichia coli O157:H7. Twenty-seven laboratories representing academia and private industry in the United States and Canada participated. Sample types were inoculated with E. coli O157:H7 at 2 different levels. Of the 1095 samples and controls analyzed and confirmed, 459 were positive and 557 were negative by both methods. No statistical differences (p <0.05) were observed between the Reveal and BAM methods.


2006 ◽  
Vol 69 (5) ◽  
pp. 1154-1158 ◽  
Author(s):  
MARGARET L. KHAITSA ◽  
MARC L. BAUER ◽  
GREGORY P. LARDY ◽  
DAWN K. DOETKOTT ◽  
REDEMPTA B. KEGODE ◽  
...  

Cattle are an important reservoir of Escherichia coli O157:H7, which can lead to contamination of food and water, and subsequent human disease. E. coli O157:H7 shedding in cattle has been reported as seasonal, with more animals shedding during summer and early fall than during winter. North Dakota has relatively cold weather, especially in winter and early spring, compared with many other regions of the United States. The objective was to assess fecal shedding of E. coli O157: H7 in North Dakota feedlot cattle over the fall, winter, and early spring. One hundred forty-four steers were assigned randomly to 24 pens on arrival at the feedlot. Samples of rectal feces were obtained from each steer four times (October and November 2003, and March and April 2004) during finishing. On arrival (October 2003), 2 (1.4%) of 144 cattle were shedding E. coli O157:H7. The shedding increased significantly to 10 (6.9%) of 144 after 28 days (November 2003), to 76 (53%) of 143 at the third sampling (March 2004), and dropped significantly to 30 (21%) of 143 at the fourth (last) sampling (March 2004) before slaughter. Unfortunately, we were unable to sample the cattle during winter because of the extreme weather conditions. Sampling time significantly (P < 0.0001) influenced variability in E. coli O157:H7 shedding, whereas herd (P = 0.08) did not. The prevalence of E. coli O157:H7 shedding in North Dakota steers in fall and early spring was comparable to what has been reported in other parts of the United States with relatively warmer weather. Further research into E. coli O157:H7 shedding patterns during extreme weather such as North Dakota winters is warranted in order to fully assess the seasonal effect on the risk level of this organism.


2020 ◽  
Vol 41 (6) ◽  
pp. 716-722
Author(s):  
Mimi R. Precit ◽  
Kelly Kauber ◽  
William A. Glover ◽  
Scott J. Weissman ◽  
Tashina Robinson ◽  
...  

AbstractBackground:Carbapenem-resistant Enterobacterales (CRE) are common causes of healthcare-associated infections and are often multidrug resistant with limited therapeutic options. Additionally, CRE can spread within and between healthcare facilities, amplifying potential harms.Objective:To better understand the burden, risk factors, and source of acquisition of carbapenemase genes in clinical Escherichia coli and Klebsiella spp isolates from patients in Washington to guide prevention efforts.Design:Multicenter prospective surveillance study.Methods:Escherichia coli and Klebsiella spp isolates meeting the Washington state CRE surveillance case definition were solicited from clinical laboratories and tested at Washington Public Health Laboratories using polymerase chain reaction (PCR) for the 5 most common carbapenemase genes: blaKPC, blaNDM, blaIMP, blaVIM, and blaOXA-48. Case patients positive by PCR were investigated by the public health department.Results:From October 2012 through December 2017, 363 carbapenem-resistant E. coli and Klebsiella spp isolates were tested. Overall, 45 of 115 carbapenem-resistant K. pneumoniae (39%), 1 of 8 K. oxytoca (12.5%), and 28 of 239 carbapenem-resistant E. coli (11.7%) were carbapenemase positive. Of 74 carbapenemase-positive isolates, blaKPC was most common (47%), followed by blaNDM (30%), blaOXA-48 (22%), and blaIMP (1%). Although all cases had healthcare exposure, blaKPC acquisition was associated with US health care, whereas non-blaKPC acquisition was associated with international health care or travel.Conclusions:We report that blaKPC, the most prevalent carbapenemase in the United States, accounts for nearly half of carbapenemase cases in Washington state and that most KPC-cases are likely acquired through in-state health care.


2004 ◽  
Vol 67 (10) ◽  
pp. 2274-2276 ◽  
Author(s):  
T. R. CALLAWAY ◽  
R. C. ANDERSON ◽  
G. TELLEZ ◽  
C. ROSARIO ◽  
G. M. NAVA ◽  
...  

Escherichia coli O157:H7 is a foodborne pathogenic bacterium that can reside undetected in the gastrointestinal tract of cattle because colonization by this bacterium is asymptomatic. Recent research has indicated that swine can carry and transmit this pathogen as well. The development of more advanced and sensitive detection techniques has improved the limit of detection and increased sensitivity for this important pathogen. This study was undertaken to determine the prevalence of E. coli O157 in cattle and swine in Mexico with the more sensitive detection technique of immunomagnetic bead separation. Samples (n = 60 per farm) were taken from four cattle and four swine farms (n = 240 cattle samples, n = 240 swine samples) located throughout central Mexico in October 2001. The prevalence of E. coli O157 was found to be only 1.25% on cattle farms and 2.1% on swine farms. The prevalence in cattle in this study is lower than that reported in the United States and could be related to the lower reported prevalence of E. coli O157 in humans in Mexico. However, further research is needed to verify prevalence throughout other regions of Mexico, as well as prevalence during other seasons of the year.


2000 ◽  
Vol 63 (6) ◽  
pp. 819-821 ◽  
Author(s):  
DAVID W. K. ACHESON

Escherichia coli O157:H7 is but one of a group of Shiga toxin-producing E. coli (STEC) that cause both intestinal disease such as bloody and nonbloody diarrhea and serious complications like hemolytic uremic syndrome (HUS). While E. coli O157: H7 is the most renowned STEC, over 200 different types of STEC have been documented in meat and animals, at least 60 of which have been linked with human disease. A number of studies have suggested that non-O157 STEC are associated with clinical disease, and non-O157 STEC are present in the food supply. Non-O157 STEC, such as O111 have caused large outbreaks and HUS in the United States and other countries. The current policy in the United States is to examine ground beef for O157:H7 only, but restricting the focus to O157 will miss other important human STEC pathogens.


1997 ◽  
Vol 60 (5) ◽  
pp. 462-465 ◽  
Author(s):  
DALE D. HANCOCK ◽  
DANIEL H. RICE ◽  
LEE ANN THOMAS ◽  
DAVID A. DARGATZ ◽  
THOMAS E. BESSER

Fecal samples from cattle in 100 feedlots in 13 states were bacteriologically cultured for Escherichia coli O157 that did not ferment sorbitol, lacked beta-glucuronidase, and possessed genes coding for Shiga-like toxin. In each feedlot 30 fresh fecal-pat samples were collected from each of four pens: with the cattle shortest on feed, with cattle longest on feed, and with cattle in two randomly selected pens. E. coli O157 was isolated from 210 (1.8%) of 11,881 fecal samples. One or more samples were positive for E. coli O157 in 63 of the 100 feedlots tested. E. coli O157 was found at roughly equal prevalence in all the geographical regions sampled. The prevalence of E. coli O157 in the pens with cattle shortest on feed was approximately threefold higher than for randomly selected and longest on feed pens. Of the E. coli O157 isolates found in this study, 89.52% expressed the H7 flagellar antigen. E. coli O157 was found to be widely distributed among feedlot cattle, but at a low prevalence, in the United States.


2014 ◽  
Vol 77 (1) ◽  
pp. 100-105 ◽  
Author(s):  
MUHSIN AYDIN ◽  
GENE P. D. HERZIG ◽  
KWANG CHEOL JEONG ◽  
SAMANTHA DUNIGAN ◽  
PARTH SHAH ◽  
...  

Escherichia coli O157:H7 is a major foodborne pathogen that has posed serious problems for food safety and public health. Recent outbreaks and recalls associated with various foods contaminated by E. coli O157:H7 clearly indicate its deleterious effect on food safety. A rapid and sensitive detection assay is needed for this harmful organism to prevent foodborne illnesses and control outbreaks in a timely manner. We developed a magnetic bead–based immunoassay for detection of E. coli O157:H7 (the most well-known Shiga toxigenic E. coli strain) with a 96-well microplate as an assay platform. Immunomagnetic separation (IMS) and tyramide signal amplification were coupled to the assay to increase its sensitivity and specificity. This immunoassay was able to detect E. coli O157:H7 in pure culture with a detection limit of 50 CFU/ml in less than 3 h without an enrichment step. The detection limit was decreased 10-fold to 5 CFU/ml with addition of a 3-h enrichment step. When this assay was tested with other nontarget foodborne pathogens and common enteric bacteria, no cross-reactivity was found. When tested with artificially contaminated ground beef and milk samples, the assay sensitivity decreased two- to fivefold, with detection limits of 250 and 100 CFU/ml, respectively, probably because of the food matrix effect. The assay results also were compared with those of a sandwich-type enzyme-linked immunosorbent assay (ELISA) and an ELISA coupled with IMS; the developed assay was 25 times and 4 times more sensitive than the standard ELISA and the IMS-ELISA, respectively. Tyramide signal amplification combined with IMS can improve sensitivity and specificity for detection of E. coli O157:H7. The developed assay could be easily adapted for other foodborne pathogens and will contribute to improved food safety and public health.


2001 ◽  
Vol 67 (9) ◽  
pp. 3810-3818 ◽  
Author(s):  
Genevieve A. Barkocy-Gallagher ◽  
Terrance M. Arthur ◽  
Gregory R. Siragusa ◽  
James E. Keen ◽  
Robert O. Elder ◽  
...  

ABSTRACT Escherichia coli O157:H7 and O157 nonmotile isolates (E. coli O157) previously were recovered from feces, hides, and carcasses at four large Midwestern beef processing plants (R. O. Elder, J. E. Keen, G. R. Siragusa, G. A. Barkocy-Gallagher, M. Koohmaraie, and W. W. Laegreid, Proc. Natl. Acad. Sci. USA 97:2999–3003, 2000). The study implied relationships between cattle infection and carcass contamination within single-source lots as well as between preevisceration and postprocessing carcass contamination, based on prevalence. These relationships now have been verified based on identification of isolates by genomic fingerprinting.E. coli O157 isolates from all positive samples were analyzed by pulsed-field gel electrophoresis of genomic DNA after digestion with XbaI. Seventy-seven individual subtypes (fingerprint patterns) grouping into 47 types were discerned among 343 isolates. Comparison of the fingerprint patterns revealed three clusters of isolates, two of which were closely related to each other. Remarkably, isolates carrying both Shiga toxin genes and nonmotile isolates largely fell into specific clusters. Within lots analyzed, 68.2% of the postharvest (carcass) isolates matched preharvest (animal) isolates. For individual carcasses, 65.3 and 66.7% of the isolates recovered postevisceration and in the cooler, respectively, matched those recovered preevisceration. Multiple isolates were analyzed from some carcass samples and were found to include strains with different genotypes. This study suggests that mostE. coli O157 carcass contamination originates from animals within the same lot and not from cross-contamination between lots. In addition, the data demonstrate that most carcass contamination occurs very early during processing.


2010 ◽  
Vol 73 (2) ◽  
pp. 274-285 ◽  
Author(s):  
E. FRANZ ◽  
S. O. TROMP ◽  
H. RIJGERSBERG ◽  
H. J. van der FELS-KLERX

Fresh vegetables are increasingly recognized as a source of foodborne outbreaks in many parts of the world. The purpose of this study was to conduct a quantitative microbial risk assessment for Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes infection from consumption of leafy green vegetables in salad from salad bars in The Netherlands. Pathogen growth was modeled in Aladin (Agro Logistics Analysis and Design Instrument) using time-temperature profiles in the chilled supply chain and one particular restaurant with a salad bar. A second-order Monte Carlo risk assessment model was constructed (using @Risk) to estimate the public health effects. The temperature in the studied cold chain was well controlled below 5°C. Growth of E. coli O157:H7 and Salmonella was minimal (17 and 15%, respectively). Growth of L. monocytogenes was considerably greater (194%). Based on first-order Monte Carlo simulations, the average number of cases per year in The Netherlands associated the consumption leafy greens in salads from salad bars was 166, 187, and 0.3 for E. coli O157:H7, Salmonella, and L. monocytogenes, respectively. The ranges of the average number of annual cases as estimated by second-order Monte Carlo simulation (with prevalence and number of visitors as uncertain variables) were 42 to 551 for E. coli O157:H7, 81 to 281 for Salmonella, and 0.1 to 0.9 for L. monocytogenes. This study included an integration of modeling pathogen growth in the supply chain of fresh leafy vegetables destined for restaurant salad bars using software designed to model and design logistics and modeling the public health effects using probabilistic risk assessment software.


2007 ◽  
Vol 12 (34) ◽  
Author(s):  
A Stirling ◽  
G McCartney ◽  
S Ahmed ◽  
J Cowden

The National Health Service’s (NHS) Greater Glasgow and Clyde Public Health Protection Unit is currently investigating an outbreak of E. coli O157 infection in Paisley.


Sign in / Sign up

Export Citation Format

Share Document