scholarly journals Comparison of shear bond strength of CAD/CAM and conventional heat-polymerized acrylic resin denture bases to auto-polymerized and heat-polymerized acrylic resins after aging

Author(s):  
M. Taghva ◽  
S. Enteghad ◽  
A. Jamali ◽  
M. Mohaghegh
2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Greciana Bruzi Brasil Pinto ◽  
MAGNE P ◽  
BRUZI G ◽  
CARVALHO A ◽  
ENCISO R ◽  
...  

Purpose. Evaluate surface treatments and silane application methods and their effect on shear bond strength (SBS) before and after aging. Materials and methods. Slices of IPS e.max CAD and Vitablocs Mark II, were embedded in acrylic resin. The block was randomly assigned to 5 groups; E:etching with hydrofluoric acid (HF), rinsing, followed by cleaning in ultrasonic bath; E/S:HFetching and cleaned as group E followed by silane application for 20s, air drying and hot drying; E/S+:HFetching and cleaned as group E, followed by silane application for 60s, air drying and hot air drying, rinsing with boiling water and hot air drying; S:silane application for 20s followed by air drying and hot air drying; S+:silane application for 60s followed by air drying, air drying and hot air drying, rinsing in boiling water and hot drying. Cylinders of composite resin (n=12) were bonded with adhesive. SBS testing was carried out after 24h or after thermocycling for groups E; E/S and E/S+. Results. For 24h SBS showed significantly higher mean bond strength with E/S, for both ceramic, compared to E and E/S+. The use of silane alone showed significantly lower mean bond strength. No significant differences were found between E/S and E/S+ for VITA. The SBS was negatively affected by simulated aging in E/S group and positively in E/S+. Conclusions. The association of HFetching and a heat-dried silane showed to be significant to obtain a high SBS. Furthermore, the optimized silane application is not relevant to the immediate SBS while it enhances after aging.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Sandra Lúcia Andrade de Freitas ◽  
William Cunha Brandt ◽  
Milton Edson Miranda ◽  
Rafael Pino Vitti

Objective. To evaluate the shear bond strength between different artificial teeth and denture base polymerized by two polymerization methods submitted to thermocycling. Materials and Methods. Two acrylic resins were selected according to the polymerization method (water-bath and microwave), and four different artificial teeth (Biotone, Dentsply; Trilux, Vipi Dent; Premium 8, Heraeus Kulzer; Soluut PX, Yamahachi) were also tested. The polymerization of the acrylic resin was performed by using conventional cycle (8 h at 74°C) in water-bath and using two cycles (20 min at 270 W + 5 min at 360 W) by the microwave method. The shear bond strength was evaluated after 24 h of water storage at 37°C (immediately) and after the thermocycling test (5,000 cycles, 5–55°C). The shear bond strength (n=10) was performed using a universal testing machine (Instron 4411) at a crosshead speed of 1.0 mm/min. Modes of failures were classified as cohesive and adhesive. The data (MPa) were statistically analyzed by three-way ANOVA, and the mean values were compared by the Tukey test (α = 0.05). Results. In general, the polymerization by microwave showed the highest shear bond strength values, and Trilux artificial teeth had the lowest bond strength values (p<0.05). Thermocycling did not affect the shear bond strength (p<0.05). There was a predominance of cohesive failures for all groups. Conclusions. The chemical composition of the artificial teeth affects the bond strength, and the microwave method is preferable to perform the acrylic resin polymerization.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Greciana Bruzi Brasil Pinto ◽  
MAGNE P ◽  
BRUZI G ◽  
CARVALHO A ◽  
ENCISO R ◽  
...  

Purpose. Evaluate surface treatments and silane application methods and their effect on shear bond strength (SBS) before and after aging. Materials and methods. Slices of IPS e.max CAD and Vitablocs Mark II, were embedded in acrylic resin. The block was randomly assigned to 5 groups; E:etching with hydrofluoric acid (HF), rinsing, followed by cleaning in ultrasonic bath; E/S:HFetching and cleaned as group E followed by silane application for 20s, air drying and hot drying; E/S+:HFetching and cleaned as group E, followed by silane application for 60s, air drying and hot air drying, rinsing with boiling water and hot air drying; S:silane application for 20s followed by air drying and hot air drying; S+:silane application for 60s followed by air drying, air drying and hot air drying, rinsing in boiling water and hot drying. Cylinders of composite resin (n=12) were bonded with adhesive. SBS testing was carried out after 24h or after thermocycling for groups E; E/S and E/S+. Results. For 24h SBS showed significantly higher mean bond strength with E/S, for both ceramic, compared to E and E/S+. The use of silane alone showed significantly lower mean bond strength. No significant differences were found between E/S and E/S+ for VITA. The SBS was negatively affected by simulated aging in E/S group and positively in E/S+. Conclusions. The association of HFetching and a heat-dried silane showed to be significant to obtain a high SBS. Furthermore, the optimized silane application is not relevant to the immediate SBS while it enhances after aging.


2014 ◽  
Vol 08 (04) ◽  
pp. 498-503 ◽  
Author(s):  
Lucas da Fonseca Roberti Garcia ◽  
Hebert Luis Rossetto ◽  
Fernanda de Carvalho Panzeri Pires-de-Souza

ABSTRACT Objective: To evaluate the shear bond strength of a novel calcium aluminate-based cement, EndoBinder (EB), to dentine in comparison with Grey and White Mineral Trioxide Aggregate (MTA). Materials and Methods: Root canal hemi-sections obtained from 30 extracted molar teeth were embedded in self-polymerized acrylic resin and were grounded wet in order to obtain a flat dentine surface. Next, the roots were randomly assigned into three groups (n = 10), according to the cement used, as follows: EB: EndoBinder; WMTA: White MTA and GMTA: Grey MTA. The shear bond strength test was performed using a Universal Testing Machine (0.5 mm/min) and the data were submitted to statistical analysis (1-way ANOVA and Tukey tests, P < 0.05). Results: EB presented the highest shear bond strength values; however, there was no statistically significant difference in comparison with GMTA (P > 0.05). WMTA presented the lowest mean values, which were significant in comparison with EB (P < 0.05). Conclusions: The novel calcium aluminate-based cement presented higher shear bond strength than WMTA, and should be considered as a promising alternative in endodontic therapy.


2014 ◽  
Vol 30 ◽  
pp. e38-e39
Author(s):  
M.A. Basílio ◽  
K.V. Cardoso ◽  
G.M.R.M. De Souza ◽  
E.M. Mariscal ◽  
J.N. Arioli-Filho

2011 ◽  
Vol 36 (5) ◽  
pp. 492-501 ◽  
Author(s):  
B Stawarczyk ◽  
R Hartmann ◽  
L Hartmann ◽  
M Roos ◽  
M Özcan ◽  
...  

SUMMARY This study tested the impact of Gluma Desensitizer on the shear bond strength (SBS) of two conventional (RelyX ARC, Panavia 21) and two self-adhesive (RelyX Unicem, G-Cem) resin luting cements after water storage and thermocycling. Human third molars (N=880) were embedded in acrylic resin. The buccal dentin was exposed. Teeth were randomly divided into four main groups, and the following cements were adhered: 1) RelyX ARC, 2) Panavia 21, 3) RelyX Unicem, and 4) G-Cem. In half of the teeth in each group, dentin was treated with Gluma Desensitizer. In the conventional cement groups, the corresponding etchant and adhesive systems were applied. SBS of the cements was tested after 1 hour (initial); at 1, 4, 9, 16, and 25 days of water storage; and at 1, 4, 9, 16, and 25 days of thermocycling. SBS data were analyzed by one-way analysis of variance (ANOVA); this was followed by the post hoc Scheffé test and a t-test. Overall, the highest mean SBS (MPa) was obtained by RelyX ARC (ranging from 14.6 ± 3.9 to 17.6 ± 5.2) and the lowest by Panavia 21 in combination with Gluma Desensitizer (ranging from 0.0 to 2.9 ± 1.0). All tested groups with and without desensitizer showed no significant decrease after aging conditions compared with baseline values (p&gt;0.05). Only the Panavia 21/Gluma Desensitizer combination showed a significant decrease after 4 days of thermocyling compared with initial values and 1 day thermocycling. Self-adhesive cements with Gluma Desensitizer showed increased SBS after aging conditions (ranging from 7.4 ± 1.4 to 15.2 ± 3) compared with groups without desensitizer (ranging from 2.6 ± 1.2 to 8.8 ± 2.9). No cohesive failures in dentin were observed in any of the test groups. Although self-adhesive cements with and without desensitizer presented mainly adhesive failures after water storage (95.8%) and thermocyling (100%), conventional cement (RelyX ARC) showed mainly mixed failures (90.8% and 89.2%, after water storage and thermocyling, respectively). Application of the Gluma Desensitizer to dentin before cementation had a positive effect on the SBS of self-adhesive cements.


2010 ◽  
Vol 177 ◽  
pp. 186-189 ◽  
Author(s):  
Long Quan Shao ◽  
Bin Deng ◽  
Yuan Fu Yi ◽  
Qi Liu ◽  
Wei Wei Zhang ◽  
...  

In this study, the binding performance of a Cercon-based zirconia framework material and special Cercon Ceram S zirconia veneering porcelain is discussed. Rectangular 30 mm × 20 mm × 2 mm porcelain blocks were made from zirconia using the CAD/CAM system. The 2 mm veneering porcelain was then sintered onto blocks at a temperature of 850-800°C with a loading speed of l mm/min. The shear bond strength of the interface was tested. Sintering was studied by visual observation, scanning electron microscopy, energy dispersive spectroscopy (EDS), thermal shock test and other methods. Excellent sintering results of the zirconia framework material and veneering porcelain can be achieved. The cross-sectional morphology of the samples, observed by SEM, shows a uniform, fine, and smooth texture for the veneering porcelain, whereas that of the zirconia framework material shows a rough surface with a uniform and compact texture. EDS results indicate that a small amount of A12O3 and SiO2 is present in the zirconia area, and no ZrO2 or Y2O3 is detected in the veneering porcelain area. No interlayer radial crack or flaw is found throughout the entire thermal shock test of the samples at 60-240°C. Thus, the cracking temperature of the samples is pegged at T>240°C. The shear bond strength of the interface is 32.62±5.77 MPa. Chemical element infiltration exists between zirconia and the veneering porcelain, indicating the chemical bond between the two. An excellent match between the Cercon-based zirconia framework and the special veneering porcelain can be achieved, which can satisfy clinical requirements.


Sign in / Sign up

Export Citation Format

Share Document