scholarly journals A laboratory-based, experimental system for the study of ocean acidification effects on marine invertebrate larvae

2010 ◽  
Vol 8 (8) ◽  
pp. 441-452 ◽  
Author(s):  
Nann A. Fangue ◽  
Michael J. O'Donnell ◽  
Mary A. Sewell ◽  
Paul G. Matson ◽  
Anna C. MacPherson ◽  
...  

Ocean warming and acidification are major climate change stressors for marine invertebrate larvae, and their impacts differ between habitats and regions. In many regions species with pelagic propagules are on the move, exhibiting poleward trends as temperatures rise and ocean currents change. Larval sensitivity to warming varies among species, influencing their invasive potential. Broadly distributed species with wide developmental thermotolerances appear best able to avail of the new opportunities provided by warming. Ocean acidification is a multi-stressor in itself and the impacts of its covarying stressors differ among taxa. Increased pCO2 is the key stressor impairing calcification in echinoid larvae while decreased mineral saturation is more important for calcification in bivalve larvae. Non-feeding, non-calcifying larvae appear more resilient to warming and acidification. Some species may be able to persist through acclimatization/adaptation to produce resilient offspring. Understanding the capacity for adaptation/acclimatization across generations is important to predicting the future species composition of marine communities.


2013 ◽  
Vol 216 (24) ◽  
pp. 4580-4589 ◽  
Author(s):  
J. Mukherjee ◽  
K. K. W. Wong ◽  
K. H. Chandramouli ◽  
P.-Y. Qian ◽  
P. T. Y. Leung ◽  
...  

The functional properties of marine invertebrate larvae represent the sum of the physiological activities of the individual, the interdependence among cells making up the whole, and the correct positioning of cells within the larval body. This chapter examines physiological aspects of nutrient acquisition, digestion, assimilation, and distribution within invertebrate larvae from an organismic and comparative perspective. Growth and development of larvae obviously require the acquisition of “food.” Yet the mechanisms where particulate or dissolved organic materials are converted into biomass and promote development of larvae differ and are variably known among groups. Differences in the physiology of the digestive system (secreted enzymes, gut transit time, and assimilation) within and among feeding larvae suggest the possibility of an underappreciated plasticity of digestive physiology. How the ingestion of seawater by and the existence of a circulatory system within larvae contribute to larval growth and development represent important topics for future research.


1983 ◽  
Vol 61 (8) ◽  
pp. 1701-1719 ◽  
Author(s):  
Robert D. Burke

The induction of metamorphosis by environmentally derived cues is reviewed in barnacles, molluscs, hydroids, echinoids, and ascidians in the context of the neurological and behavioral model of stimulus and response. The model proposes that cues associated with preferred juvenile or adult habitats are the stimuli. Stimuli are received by receptors that communicate with the effectors of metamorphosis, larval and adult tissues. The response is a combination of morphogenetic, histolytic, and histogenic processes. Receptors in all five taxa are assumed to be superficial sensory receptors, though there is no direct evidence for their involvement in the perception of cues. Although the induction of metamorphosis by environmental cues in all five taxa fits well within a stimulus–response model, there is currently only circumstantial evidence for neural or endocrine control of metamorphosis.


2008 ◽  
Vol 214 (1) ◽  
pp. 42-49 ◽  
Author(s):  
Jonathan D. Allen

Author(s):  
P. J. Hayward ◽  
Paul H. Harvey

The spatial settlement of marine invertebrate larvae is not a random process. The distribution of the adults of a particular species is influenced by the behavioural responses of the animal to a range of environmental stimuli which, in the case of many sessile invertebrates, result in the display of clear substrate selection. The role of habitat selection in determining the distribution of aquatic invertebrates has been the subject of a review by Meadows & Campbell (1972). The selection of algal substrata by the larvae of various intertidal species of Bryozoa has been demonstrated by Ryland (1959); among these, the ctenostomatous bryozoans Alcyonidium hirsutum and A. polyoum were shown to exhibit a strong preference for fronds of the alga Fucus serratus, an experi-mental result which accorded well with the distribution of the two species on the shore (Ryland, 1962).


Sign in / Sign up

Export Citation Format

Share Document