Teaching Poetic Autoethnography to L2 STEM Students in Taiwan

Author(s):  
Fang-Yu Liao
Keyword(s):  
2016 ◽  
Author(s):  
Reginald Blake ◽  
◽  
Janet Liou-Mark ◽  
Laura Yuen-Lau ◽  
Hamidreza Norouzi ◽  
...  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
M. Dolores La Rubia ◽  
Catalina Rus-Casas ◽  
Salvador Bueno-Rodriguez ◽  
Juan D. Aguilar-Pena ◽  
Dolores Eliche-Quesada

2021 ◽  
Vol 11 (4) ◽  
pp. 173
Author(s):  
María-José Arévalo ◽  
María Asun Cantera ◽  
Vanessa García-Marina ◽  
Marian Alves-Castro

Although Error Analysis (EA) has been broadly used in Foreign Language and Mother Tongue learning contexts, it has not been applied in the field of engineering and by STEM (Science, Technology, Engineering, and Mathematics) students in a systematic way. In this interdisciplinary pilot study, we applied the EA methodology to a wide corpus of exercises and essays written by third-year students of mechanical engineering, with the main purpose of achieving a precise diagnosis of the students’ strengths and weaknesses in writing skills. For the analysis to be as exhaustive as possible, the errors were typologized into three main categories (linguistic, mathematical, and rhetorical–organizational), each of which is, in turn, subdivided into 15 items. The results show that the predominant errors are rhetorical–organizational (39%) and linguistic (38%). The application of EA permits the precise identification of the areas of improvement and the subsequent implementation of an educational design that allows STEM students to improve their communicative strategies, especially those related to the writing skills and, more precisely, those having to do with the optimal use of syntax, punctuation, rhetorical structure of the text, and mathematical coherence.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kaitlyn Atkins ◽  
Bryan M. Dougan ◽  
Michelle S. Dromgold-Sermen ◽  
Hannah Potter ◽  
Viji Sathy ◽  
...  

Abstract Background Mentorship has been well-established in the literature as fostering scientific identity and career pathways for underrepresented minority students in science, technology, engineering, and mathematics (STEM) fields. Mentorship is prioritized by programs that aim to increase diversity and support future leadership in STEM fields, but in-depth understanding of mentorship in these contexts remains limited. Drawing on qualitative interview data, we sought to understand the relationship between mentoring and scientific identity among a diverse sample of 24 students in one such program, in order to inform program development. Results Qualitative analysis of the data revealed that mentorship, especially research mentorship, was common and played a role in formation of scientific identity. Students with research mentors tended to say they strongly identified as scientists, whereas those who lacked research mentorship varied in their level of scientific identity. In interviews, research-mentored students described mentors as colleagues who gave them opportunities to grow and as examples to look up to. Students valued mentors with whom they identified on the basis of demographic similarity or shared values, as well as those who challenged them in their academic and research endeavors. Conclusions Our analysis highlights how different mentoring experiences can contribute to development of future STEM leadership. We discuss implications for practice, including the need for tailored mentoring approaches and research-focused mentoring, and offer several recommendations for research and programming.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Ethel Ndidiamaka Abe ◽  
Vitallis Chikoko

Abstract Background Science, Technology, Engineering, and Mathematics (STEM) educators and stakeholders in South Africa are interested in the ways STEM students make their career decisions because of the shortages in these critical skills. Although various factors including family, teachers, peers, and career interest have been reported as determinants of career decision-making, there is a scarcity of studies that have qualitatively explored the levels of influences of any of these factors in the South African context. The main aim of this study was to investigate the factors that influence career decision-making among STEM student majors in a South African university. By better understanding students’ viewpoint on these factors, educators and policymakers can assist students in making career decisions that fit their experiences, personality, and expectations. Students in their 1st, 2nd, 3rd, and 4th year of study respectively, were invited to respond to a semi-structured questionnaire about the factors that were influential in their decision to pursue a career in STEM. A total of 203 texts (response rate: 63%) were qualitatively analyzed utilising a hermeneutic phenomenology approach to traditional content analysis, whereby themes develop inductively from the data. Results We used a hermeneutic phenomenological method to traditional content analysis to examine the factors influencing participants’ career decision-making. Peer interrogation, modified member verification, compact description, code-recode tactics, and assessment trails were engaged to confirm quality and rigour. Three key results emerged, namely interpersonal, intrapersonal, and career outcomes expectancy. The perceptions of STEM students of their career decision-making in the South African context are more multifaceted than reported previously. The insights could inform policies to counter skills shortages in the STEM area. Conclusions In this exploratory study, we gave attention to describing the various ranges of students’ perceptions and experiences regarding their career decision-making. Several students reported, among other factors, that their families, personality, and expectations played influential roles in their career decision-making. Here, we discuss the meaning of interpersonal, intrapersonal, and outcome expectations with respect to career decision-making from the perspective of STEM students in a South African university.


Author(s):  
Jennifer Louten

Student retention is a critical issue for universities, and nearly half of the students who start degree programs in science, technology, engineering, and mathematics (STEM) do not complete them. The current study tracks the progress of STEM students taking part in an entry-to-graduation program designed to build community, provide academic and social support, and promote engagement in academically purposeful activities. Although it had no effect on the number of students who changed their major, the program more than doubled the number of students who graduated in their original major. Black or Hispanic students taking part in the program also graduated at twice the rate of comparator students, largely attributable to the success of women in these groups. The results provide needed real-world insights into how to create an equitable environment that promotes the persistence and graduation of students, including those from groups historically underrepresented in STEM.


Sign in / Sign up

Export Citation Format

Share Document