Noise floor

2021 ◽  
pp. 24-41
Author(s):  
Bridget Backhaus
Keyword(s):  
2021 ◽  
Vol 64 (3) ◽  
pp. 117-125
Author(s):  
Rajalakshmi Nandakumar ◽  
Vikram Iyer ◽  
Shyamnath Gollakota

The vision of tracking small IoT devices runs into the reality of localization technologies---today it is difficult to continuously track objects through walls in homes and warehouses on a coin cell battery. Although Wi-Fi and ultra-wideband radios can provide tracking through walls, they do not last more than a month on small coin and button cell batteries because they consume tens of milliwatts of power. We present the first localization system that consumes microwatts of power at a mobile device and can be localized across multiple rooms in settings such as homes and hospitals. To this end, we introduce a multiband backscatter prototype that operates across 900 MHz, 2.4 GHz, and 5 GHz and can extract the backscatter phase information from signals that are below the noise floor. We build subcentimeter-sized prototypes that consume 93 μW and could last five to ten years on button cell batteries. We achieved ranges of up to 60 m away from the AP and accuracies of 2, 12, 50, and 145 cm at 1, 5, 30, and 60 m, respectively. To demonstrate the potential of our design, we deploy it in two real-world scenarios: five homes in a metropolitan area and the surgery wing of a hospital in patient pre-op and post-op rooms as well as storage facilities.


2011 ◽  
Vol 94 (11) ◽  
pp. 3738-3741 ◽  
Author(s):  
Menghui Li ◽  
David Berry ◽  
Jaydip Das ◽  
David Gray ◽  
Jiefang Li ◽  
...  

2015 ◽  
Vol 64 (10) ◽  
pp. 2759-2768 ◽  
Author(s):  
Jose A. Gazquez Parra ◽  
Manuel Fernandez Ros ◽  
Nuria Novas Castellano ◽  
Rosa M. Garcia Salvador

2017 ◽  
Vol 11 (2) ◽  
pp. 755-771 ◽  
Author(s):  
Ane S. Fors ◽  
Dmitry V. Divine ◽  
Anthony P. Doulgeris ◽  
Angelika H. H. Renner ◽  
Sebastian Gerland

Abstract. In this paper we investigate the potential of melt pond fraction retrieval from X-band polarimetric synthetic aperture radar (SAR) on drifting first-year sea ice. Melt pond fractions retrieved from a helicopter-borne camera system were compared to polarimetric features extracted from four dual-polarimetric X-band SAR scenes, revealing significant relationships. The correlations were strongly dependent on wind speed and SAR incidence angle. Co-polarisation ratio was found to be the most promising SAR feature for melt pond fraction estimation at intermediate wind speeds (6. 2 m s−1), with a Spearman's correlation coefficient of 0. 46. At low wind speeds (0. 6 m s−1), this relation disappeared due to low backscatter from the melt ponds, and backscatter VV-polarisation intensity had the strongest relationship to melt pond fraction with a correlation coefficient of −0. 53. To further investigate these relations, regression fits were made both for the intermediate (R2fit = 0. 21) and low (R2fit = 0. 26) wind case, and the fits were tested on the satellite scenes in the study. The regression fits gave good estimates of mean melt pond fraction for the full satellite scenes, with less than 4 % from a similar statistics derived from analysis of low-altitude imagery captured during helicopter ice-survey flights in the study area. A smoothing window of 51 × 51 pixels gave the best reproduction of the width of the melt pond fraction distribution. A considerable part of the backscatter signal was below the noise floor at SAR incidence angles above  ∼  40°, restricting the information gain from polarimetric features above this threshold. Compared to previous studies in C-band, limitations concerning wind speed and noise floor set stricter constraints on melt pond fraction retrieval in X-band. Despite this, our findings suggest new possibilities in melt pond fraction estimation from X-band SAR, opening for expanded monitoring of melt ponds during melt season in the future.


2007 ◽  
Vol 24 (2) ◽  
pp. 270-284 ◽  
Author(s):  
Harvey E. Seim ◽  
Catherine R. Edwards

Abstract Simultaneous ADCP profile measurements are compared over a 2-month period in late 2003. One set of measurements comes from a National Data Buoy Center (NDBC) buoy-mounted ADCP, the other from a bottom-mounted, upward-looking ADCP moored roughly 500 m from the buoy. The study was undertaken to evaluate the proficiency of an experimental configuration by NDBC; unfortunately, the ADCP was not optimally configured. The higher temporally and vertically resolved bottom-mounted ADCP data are interpolated in time and depth to match the buoy-mounted ADCP measurements. It is found that the two ADCP measurements are significantly different. The buoy-mounted measurements are affected by high-frequency (<10 h period) noise that is vertically coherent throughout the profiles. This noise results in autospectra that are essentially white, unlike the classic red spectra formed from the bottom-mounted ADCP observations. The spectra imply a practical noise floor of 0.045 m s−1 for the buoy-mounted system. Contamination by surface waves is the likely cause of this problem. At tidal frequencies the buoy-mounted system underestimates major axis tidal current magnitude by 10%–40%; interference from the buoy chain and/or fish or plankton are considered the most likely cause of the bias. The subtidal velocity field (periods greater than 40 h) is only partially captured; the correlation coefficient for the east–west current is 0.49 and for the north–south current is 0.64.


2018 ◽  
Vol 11 (1) ◽  
pp. 499-514 ◽  
Author(s):  
Travis D. Toth ◽  
James R. Campbell ◽  
Jeffrey S. Reid ◽  
Jason L. Tackett ◽  
Mark A. Vaughan ◽  
...  

Abstract. Due to instrument sensitivities and algorithm detection limits, level 2 (L2) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 532 nm aerosol extinction profile retrievals are often populated with retrieval fill values (RFVs), which indicate the absence of detectable levels of aerosol within the profile. In this study, using 4 years (2007–2008 and 2010–2011) of CALIOP version 3 L2 aerosol data, the occurrence frequency of daytime CALIOP profiles containing all RFVs (all-RFV profiles) is studied. In the CALIOP data products, the aerosol optical thickness (AOT) of any all-RFV profile is reported as being zero, which may introduce a bias in CALIOP-based AOT climatologies. For this study, we derive revised estimates of AOT for all-RFV profiles using collocated Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target (DT) and, where available, AErosol RObotic NEtwork (AERONET) data. Globally, all-RFV profiles comprise roughly 71 % of all daytime CALIOP L2 aerosol profiles (i.e., including completely attenuated profiles), accounting for nearly half (45 %) of all daytime cloud-free L2 aerosol profiles. The mean collocated MODIS DT (AERONET) 550 nm AOT is found to be near 0.06 (0.08) for CALIOP all-RFV profiles. We further estimate a global mean aerosol extinction profile, a so-called “noise floor”, for CALIOP all-RFV profiles. The global mean CALIOP AOT is then recomputed by replacing RFV values with the derived noise-floor values for both all-RFV and non-all-RFV profiles. This process yields an improvement in the agreement of CALIOP and MODIS over-ocean AOT.


Sign in / Sign up

Export Citation Format

Share Document