Adapting Conservation Strategies to Climate Change in Southern Africa

Author(s):  
Chaonan Zhao ◽  
Hanbing Zhang ◽  
Man Wang ◽  
Hong Jiang ◽  
Jian Peng ◽  
...  

2016 ◽  
Vol 161 ◽  
pp. 556-564 ◽  
Author(s):  
Charles Fant ◽  
C. Adam Schlosser ◽  
Kenneth Strzepek

2014 ◽  
Vol 60 (2) ◽  
pp. 221-232 ◽  
Author(s):  
Leonard Sandin ◽  
Astrid Schmidt-Kloiber ◽  
Jens-Christian Svenning ◽  
Erik Jeppesen ◽  
Nikolai Friberg

Abstract Freshwater habitats and organisms are among the most threatened on Earth, and freshwater ecosystems have been subject to large biodiversity losses. We developed a Climate Change Sensitivity (CCS) indicator based on trait information for a selection of stream- and lake-dwelling Ephemeroptera, Plecoptera and Trichoptera taxa. We calculated the CCS scores based on ten species traits identified as sensitive to global climate change. We then assessed climate change sensitivity between the six main ecoregions of Sweden as well as the three Swedish regions based on Illies. This was done using biological data from 1, 382 stream and lake sites where we compared large-scale (ecoregional) patterns in climate change sensitivity with potential future exposure of these ecosystems to increased temperatures using ensemble-modelled future changes in air temperature. Current (1961~1990) measured temperature and ensemble-modelled future (2100) temperature showed an increase from the northernmost towards the southern ecoregions, whereas the predicted temperature change increased from south to north. The CCS indicator scores were highest in the two northernmost boreal ecoregions where we also can expect the largest global climate change-induced increase in temperature, indicating an unfortunate congruence of exposure and sensitivity to climate change. These results are of vital importance when planning and implementing management and conservation strategies in freshwater ecosystems, e.g., to mitigate increased temperatures using riparian buffer strips. We conclude that traits information on taxa specialization, e.g., in terms of feeding specialism or taxa having a preference for high altitudes as well as sensitivity to changes in temperature are important when assessing the risk from future global climate change to freshwater ecosystems.


2018 ◽  
Vol 42 (42) ◽  
pp. 115-127 ◽  
Author(s):  
William Mushawemhuka ◽  
Jayne M. Rogerson ◽  
Jarkko Saarinen

Abstract Climate and weather are important resources for tourism. In particular, nature-based tourism activities and operations are largely dependent on and affected by environmental conditions and changes. Due to the significant socio-economic role of the nature-based tourism and the tourism industry, in general, in the region of southern Africa it is important to understand the dynamics between the industry and climate change. A key aspect of this understanding are perceptions and adaptation preparedness of tourism operators towards the estimated impact of climate change. There is a dearth of empirical studies on climate change perceptions and adaptation in nature-based tourism operations across southern Africa and specifically from Zimbabwe. This research gap is addressed in this article which provides an exploratory analysis of the nature of climate change adaptation practices occurring in southern Africa using evidence from Hwange National Park, Zimbabwe.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7333 ◽  
Author(s):  
José Maria Cardoso da Silva ◽  
Alessandro Rapini ◽  
Luis Cláudio F. Barbosa ◽  
Roger R. Torres

In a world where changes in land cover and climate happen faster than ever due to the expansion of human activities, narrowly distributed species are predicted to be the first to go extinct. Studies projecting species extinction in tropical regions consider either habitat loss or climate change as drivers of biodiversity loss but rarely evaluate them together. Here, the contribution of these two factors to the extinction risk of narrowly distributed species (with ranges smaller than 10,000 km2) of seed plants endemic to a fifth-order watershed in Brazil (microendemics) is assessed. We estimated the Regional Climate Change Index (RCCI) of these watersheds (areas with microendemics) and projected three scenarios of land use up to the year 2100 based on the average annual rates of habitat loss in these watersheds from 2000 to 2014. These scenarios correspond to immediate conservation action (scenario 1), long-term conservation action (scenario 2), and no conservation action (scenario 3). In each scenario, areas with microendemics were classified into four classes: (1) areas with low risk, (2) areas threatened by habitat loss, (3) areas threatened by climate change, and (4) areas threatened by climate change and habitat loss. We found 2,354 microendemic species of seed plants in 776 areas that altogether cover 17.5% of Brazil. Almost 70% (1,597) of these species are projected to be under high extinction risk by the end of the century due to habitat loss, climate change, or both, assuming that these areas will not lose habitat in the future due to land use. However, if habitat loss in these areas continues at the prevailing annual rates, the number of threatened species is projected to increase to more than 85% (2,054). The importance of climate change and habitat loss as drivers of species extinction varies across phytogeographic domains, and this variation requires the adoption of retrospective and prospective conservation strategies that are context specific. We suggest that tropical countries, such as Brazil, should integrate biodiversity conservation and climate change policies (both mitigation and adaptation) to achieve win-win social and environmental gains while halting species extinction.


2021 ◽  
Author(s):  
Dolapo Enahoro ◽  
Jason Sircely ◽  
Randall B. Boone ◽  
Stephen Oloo ◽  
Adam M. Komarek ◽  
...  

The demand for livestock-derived foods has steadily grown over the past decades and rising incomes and human populations are expected to see demand further increase. It is unclear if current livestock feed resources are adequately prepared to meet future demand especially given the looming challenges of climate change. Many feeds such as grasses, crop by-products, and other biomass may not be widely grown commercially or sold in formal markets but are critical sources of livestock feed in many low-resource settings in which ruminant livestock production is important. The availability of these feed types can determine the extent to which the livestock sector can expand to meet growing, and sometimes critical, demand for animal-source foods. In this paper, we compare country-level projections of livestock demand from a global economic model to simulated data on feed biomass production. Our comparisons account separately for beef, lamb, and dairy demand. The data allow us to assess the future sufficiency of key sources of feed biomass, and hence aspects of the expansion capacity of livestock production in selected countries in Southern Africa. Our simulation results project that given the interacting effects of projected climate change and changes in income and population in the region, there will not be enough feed biomass produced domestically to meet growing demand for livestock products. For three types of feed biomass (feed crops including grains, grasses, and crop by-products) for which future livestock feed sufficiency was examined, our results showed feed sufficiency declines for all three feed types in Malawi and Mozambique, for two out of three in South Africa and for one of three in Zambia, under intermediate and extreme scenarios of climate change in 2050. Our results suggest an urgent need to improve feed biomass productivity to support future supply of animal protein in the study countries.


Sign in / Sign up

Export Citation Format

Share Document