scholarly journals Short and Long-Term Properties of High-Performance Concrete Containing Silica Fume for Bridge Deck Overlay

2005 ◽  
Vol 17 (5) ◽  
pp. 743-750
Author(s):  
Jong-Pil Won ◽  
Jung-Min Seo ◽  
Chang-Soo Lee ◽  
Hae-Kyun Park ◽  
Myeong-Sub Lee
1996 ◽  
Vol 23 (5) ◽  
pp. 1129-1136
Author(s):  
Axel-Pierre Bois ◽  
Mohamed Lachemi ◽  
Gérard Ballivy

The Portneuf Bridge, built in 1992, is the first air-entrained high-performance concrete bridge in North America. To understand its short and long term behaviour, an auscultation program has been set. Hence, a cylindrical concrete inclusion of the Université de Sherbrooke was installed in one of the abutments of the bridge. The aim of this study is to present the first results thus acquired. The analysis of the results allowed to calculate the coefficient of thermal expansion of the concrete and to assess deformation variations due to shrinkage and creep and the effects of rebar–concrete interaction in the upper abutment region. Moreover, the presence of thermal gradients, which creates nonisotropic deformations, has been established. Key words: high-performance concrete, deformations, thermal gradients, instrumentation, bridge, monitoring. [Journal translation]


2005 ◽  
Vol 17 (4) ◽  
pp. 559-567 ◽  
Author(s):  
Jong-Pil Won ◽  
Jung-Min Seo ◽  
Chang-Soo Lee ◽  
Hae-Kyun Park ◽  
Myeong-Sub Lee

2013 ◽  
Vol 357-360 ◽  
pp. 834-838
Author(s):  
Yu Jiang Wang ◽  
Qian Tian ◽  
Jia Ping Liu

Effect of plastic stage curing on long-term properties of high performance concrete (HPC) was studied, thereafter, the mechanism is also analyzed. Results showed that compared to compressive strength, the permeability of surface concrete (especially for silica fume concrete) was more sensitive to plastic stage curing, and deteriorations due to insufficient plastic stage curing cant be eliminated by later longer time of wet curing. Furthermore, the deterioration of pore structure and formation of microcracks were main reasons for insufficient plastic stage curing that affected properties of concrete.


2014 ◽  
Vol 604 ◽  
pp. 161-164 ◽  
Author(s):  
Genadijs Sahmenko ◽  
Nikolajs Toropovs ◽  
Matiss Sutinis ◽  
Janis Justs

The article discusses possibilities for use fine ground glass obtained from fluorescent lamp utilisation as micro filler in High Performance Concrete (HPC). Investigated mix compositions are based on silica fume (SF) and SF combination with glass powder. Testing results indicates that replacing silica fume by additionally ground fluorescent glass (up to 50%) slightly increasing consumption of water and delaying setting time of cement paste. All HPC mixes with glass powder showing decreased early-age strength and considerable strength gain after long-term hardening. It is concluded, that the best way of glass application in HPC is use fine ground glass powder together with silica fume as complex admixture.


Author(s):  
Rizwan Ahmad Khan ◽  

This paper investigates the fresh and durability properties of the high-performance concrete by replacing cement with 15% Silica fume and simultaneously replacing fine aggregates with 25%, 50%, 75% and 100% copper slag at w/b ratio of 0.23. Five mixes were analysed and compared with the standard concrete mix. Fresh properties show an increase in the slump with the increase in the quantity of copper slag to the mix. Sorptivity, chloride penetration, UPV and carbonation results were very encouraging at 50% copper slag replacement levels. Microstructure analysis of these mixes shows the emergence of C-S-H gel for nearly all mixes indicating densification of the interfacial transition zone of the concrete.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Wang ◽  
Shuo Liu ◽  
Qizhi Wang ◽  
Wei Yuan ◽  
Mingzhang Chen ◽  
...  

Based on forced vibration tests for high-performance concrete (HPC), the influence of bridge vibration induced by traveling vehicle on compressive strength and durability of HPC has been studied. It is concluded that 1 d and 2 d compressive strength of HPC decreased significantly, and the maximum reduction rate is 9.1%, while 28 d compressive strength of HPC had a slight lower with a 3% maximal drop under the action of two simple harmonic vibrations with 2 Hz, 3 mm amplitude, and 4 Hz, 3 mm amplitude. Moreover, the vibration had a slight effect on the compressive strength of HPC when the simple harmonic vibration had 4 Hz and 1 mm amplitude; it is indicated that the amplitude exerts a more prominent influence on the earlier compressive strength with the comparison of the frequency. In addition, the impact of simple harmonic vibration on durability of HPC can be ignored; this shows the self-healing function of concrete resulting from later hydration reaction. Thus, the research achievements mentioned above can contribute to learning the laws by which bridge vibration affects the properties of concrete and provide technical support for the design and construction of the bridge deck pavement maintenance.


Sign in / Sign up

Export Citation Format

Share Document