plastic stage
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 17)

H-INDEX

3
(FIVE YEARS 3)

2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Chen Wen-qiang ◽  
Li Yi-jia

AbstractExisting analytical models usually fail to match with the actual conditions due to ignoring the nonlinear behavior of the surrounding material reaction force, which changes progressively with the joint shear displacement from elastic stage to yield stage. To tackle this problem, this study proposes a new analytical model to describe the bolt deformation and bolt contribution from elastic stage to plastic stage. The developed model is verified by available experimental direct shear tests of bolted joints and compared with existing models. Then, based on this model, the effects of the joint dilation angle, the bolt installation angle, the friction angle, and the surrounding material strength on bolt contribution are also analyzed and its implication is further discussed. Our results show that the proposed model can precisely describe the evolution of bolt contribution from elastic stage to plastic stage. Compared with surrounding material strength, the augmentation of the joint dilation angle and friction angle is more beneficial to increase the bolt contribution and the optimal installation angle. The work presented is to attempt to provide a reference for the understanding of bolting mechanism of jointed rock mass, the development of bolting theories and the practice of bolting engineering.


Religions ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 46
Author(s):  
Federica Manfredi

European society has been described more than once as poor in shared rites of passage. The manipulation of skin seems to be an increasingly popular solution to fulfil perceived cultural gaps. Can contemporary tattoos be interpreted as tools of commemorating life events, especially in the occasion of births and deaths? This article analyses meanings associated with tattoos collected during two ethnographies in central Italy. Based on qualitative interviews and participant observation, the first fieldwork focuses on death-commemorative tattoos, while a 2020 (n)ethnography investigates birth-celebrative tattoos. Data confirm that the body is the mirror of the self and the skin works as the plastic stage where the embodiment of mourning and other emotions meets the social world. Tattoos are attempts of personalized spiritualities, where births and deaths become key-moments of existence that are elected pillars of the self. However, they are not (only) a private affair. This paper addresses the intersubjective valence of tattoos and their communicative purpose. In parallel with references related to both the self and the others, ethnographical data support an interpretation of tattoos as modern self-making strategies, applied to re-ordinate the past and to project a suitable self for the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Keming Liu ◽  
Xizhen Sun

The influence of rise-span ratio on the bearing performance of concrete filled steel tube (CFST) circular arch was studied in this paper, three groups of CFST circular arch specimens with different rise-span ratios (0.154, 0.207, and 0.26) were selected, the six-point uniformly distributed loading was performed, and bearing performance experiments on CFST circular arch specimens with fixed ends were carried out. In this study, the ultimate bearing capacity and deformation failure characteristics of CFST circular arch specimens were obtained. The comparative analysis shows that the deformation evolution of CFST circular arch specimens has experienced compaction stage, elastic stage, elastic-plastic stage, and plastic stage. In the elastic-plastic and plastic deformation stages, the circular arch shows good ductility and bearing capacity. The bearing capacity of the circular arch is significantly affected by the rise-span ratio. Compared with circular arch specimens with a rise-span ratio of 0.154, the yield load of specimens with a rise-span ratio of 0.207 and 0.26 is increased by 50.8% and 61.5%, and the ultimate bearing capacity is increased by 42.7% and 68.3%, respectively. The larger the rise-span ratio, the greater the yield load and ultimate bearing capacity of the specimen and the stronger the deformation resistance of circular arch. The numerical simulation on the bending resistance process of circular arch was performed by ABAQUS to present the compression failure process of steel tube and core concrete. The simulation results are in good agreement with the experimental results. The experimental and simulation results show that the circular arch first yields at the inner side of the arch foot, and the curvature of different positions of the specimen is no longer consistent. When the ultimate bearing capacity is reached, the steel pipe at the arch foot obviously heaves, and the hooping effect of the steel pipe on the concrete is invalid. Based on the above research results, a closed composite support scheme of “bolt mesh shotcrete + vertical elliptical CFST support + steel fiber concrete shotcrete layer + reinforced anchor cable” was proposed for the extremely soft rock roadway and successfully applied in the Qingshuiying coal mine.


Author(s):  
Xiao Wang ◽  
Yuetao Zhang ◽  
Zhengqing Zhou ◽  
Mingyu Huang

This paper reports the degradation assessment of mild steel during the plastic tensile process. The electron backscatter diffraction (EBSD) technique was adopted in this study. The orientation maps showed that with the increase of tensile strain, the grain surface become wrinkled, and the deviation level of intragranular orientation also increased. Meanwhile, the parameters based on the image quality of the Kikuchi bands (i.e. BC and MAD) as well as the crystallographic orientation (i.e. LAGBs content, GND density, GOS, and GROD) can be used to evaluate the degradation degree of the mild steel. The results showed that the change of BC and MAD was significant at the end of plastic stage, but was not sufficiently distinctive at the early stage; Meanwhile, the LAGBs content and GND density increased evidently during the plastic tensile. Compared with the former, the GND density exhibited stronger regularity and better evaluation effect; Besides, a general upward trend of GOS and GROD was observed at this tensile process. However, the GROD changed less at the certain plastic stage. Compared with GROD, the GOS exhibited a relatively better evaluation effect; To sum up, the GND density and GOS are the better indicators for evaluating the degradation degree of mild steel.


2021 ◽  
Author(s):  
Hanxu Zhou ◽  
Ailan Che ◽  
Renjie Zhu

Abstract Under the impact of earthquake, even if the slopes do not fail, the integrity of rock slope structure would be damaged subjected to the seismic motion. The process of damage, destruction and failure for slopes is characterized by the dynamic evolution of stability. In the areas with active tectonic activities, frequent earthquakes have a significant effect on the attenuation of slope stability. To investigate the dynamic evolution of a rock slope under earthquake motions, a series of shaking table tests were performed. An artificial synthetic earthquake seismic wave was adopted to investigate the horizontal acceleration response. The results show that the wave field propagation results in MPGA values for the slope body above the tuff structural surface are larger than those inside the slope, and a maximum value of 3.7 is observed at slope crest. The structural surface results in a mutation of the acceleration response, which is not conducive to the slope stability. The modeled slope entered the plastic stage (input motion of 2.97 m/s2) earlier than landslides occurred (input motion of 4.46 m/s2). In addition, the safety factor of the sliding blocks was calculated based on pseudo static analysis. A good correspondence was found between the safety factors and the failure mode of the slope. The damage evolution process for the rock slope can be divided into three stages: an elastic stage (Ks=1.6–4.7), a plastic stage (Ks=0.8–1.6), and a damage stage (Ks<0.8).


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Guangzhen Qu ◽  
Guangli Zhou ◽  
Sizhong Lv ◽  
Pingming Huang

The residual bearing capacity of existing bridges has been a controversial topic for engineers and technicians. In order to accurately evaluate the actual bearing capacity of a 24-year-old RC hollow beam bridge, its components with different thickness concrete leveling layer were removed and transported back to the laboratory. The representative static and dynamic responses of the two beams were monitored during the whole procedure. A quick assessment of loading capacity of bridge using crack height and a parameter correction method for the crack width prediction formula in the code were proposed. In addition, comparison of measured and current design codes GB 50010 and ACI 318 predicted behaviour of existing beams was also presented. The results showed that the bending process of the RC hollow beam went through the elastic phase to the elastic-plastic phase and to the final failure. The actual flexural capacity of two beams was 10% larger than the calculated values. The natural vibration frequencies of the beam changed slightly before plastic stage, but the modal amplitude increased with the increase of degree of damage, once the beam entered plastic stage. The predicted deflections according to GB50010 were consistent with the experimental values at about 200 kN; for the code ACI, as the loading force increased, the difference between the two gradually decreased.


2020 ◽  
Vol 103 (2) ◽  
pp. 003685042092781
Author(s):  
TieNeng Guo ◽  
Xu Hua ◽  
ZhiJie Yan ◽  
Chunsheng Bai

Based on Hertz contact theory, an elastic-plastic contact mechanics model of outer cylinder under different contact angles of axis is proposed. The relationship among contact angle, load and contact deformation, contact stiffness and contact area is established. The finite element method is used to simulate the elastic-plastic contact process of the cylinder. The influence of the load and radius of the cylinder model on the contact deformation and the contact stiffness is compared and analyzed under different contact angles. The error of the analysis results of the finite element and the mechanical model is within 9%. On this basis, the influence of contact deformation, contact area and contact angle on the contact stiffness of the outer cylinder in elastic and plastic stage is explored. The results show that in the stage of elastic and plastic deformation, the amount of contact deformation and contact area increase with the increase of load. The contact stiffness decreases with the increase of contact angle and increases with the increase of cylinder radius. The amount of contact deformation decreases with the increase of cylinder radius, and tends to constant gradually. In the elastic stage, the contact stiffness increases with the increase of load. The contact area decreases with the increase of contact angle and increases with the increase of cylinder radius. In the plastic stage, the contact stiffness is constant with the increase of load, and the contact area is independent of contact angle and cylinder radius.


2020 ◽  
Vol 12 (5) ◽  
pp. 1768
Author(s):  
Jing Lv ◽  
Tianhua Zhou ◽  
Kunlun Li

As a new low-carbon material, development of preplaced aggregate concrete (PAC) will achieve huge economic and social benefits. However, few existing research is focused on applying PAC in structural elements. This paper is attempt to apply PAC in concrete-filled steel tube (CFST) stub columns and the bearing behaviors of PAC-filled steel tube (PACFST) stub columns under axial compression are also experimentally investigated. The results indicate that the failure modes of PACFST stub columns are all drum-like failure mode which are analogous to that of CFST stub columns. The axial load-axial strain curves of PACFST stub columns can be roughly divided into elastic stage, elastic-plastic stage and plastic stage. Under the similar ultimate load, the ultimate strains are a bit smaller than that of CFST stub columns. Comparison of the results of ultimate load of PACFST stub columns calculated using the existing relevant standards for the bearing capacity calculation methods of CFST stub columns, GB 50936 and JGJ 138 are much more suitable to assess the bearing capacity of PACFST stub columns. Approximately 15%~20% saving in cement consumption will be accomplished with popularization and utilization of PACFST stub columns as compared with CFST stub columns.


2019 ◽  
Vol 38 (16) ◽  
pp. 2231-2241 ◽  
Author(s):  
Ya Wei ◽  
Weiqiang Guo ◽  
Qianqian Zhang

Sign in / Sign up

Export Citation Format

Share Document