Identifying remanent magnetization effects in magnetic data

Geophysics ◽  
1993 ◽  
Vol 58 (5) ◽  
pp. 653-659 ◽  
Author(s):  
Walter R. Roest ◽  
Mark Pilkington

Remanent magnetization can have a significant influence on the shape of magnetic anomalies in areas that are generally characterized by induced magnetization. Since modeling of magnetic anomalies is nonunique, additional constraints on the direction of magnetization are useful. A method is proposed here to study the possible contribution of remanent magnetization to a particular anomaly, by comparing two functions that are calculated directly from the observations: (1) the amplitude of the analytic signal, and (2) the horizontal gradient of pseudogravity. From the amplitude and relative position of maxima in these derived quantities, we infer the deviation of the magnetization direction from that of the ambient field. The approach is applied to the magnetic anomaly in the center of the Manicouagan impact structure (Canada). Our results, based only on the magnetic anomaly observations, are in close agreement with constraints on the direction of remanent magnetization from rock samples.

Author(s):  
Pham Thanh Luan ◽  
Le Thi Sang ◽  
Vu Duc Minh ◽  
Ngo Thi To Nhu ◽  
Do Duc Thanh ◽  
...  

This paper presents a comparative study of effectiveness of edge detection methods such as total horizontal gradient, analytic signal amplitude, tilt angle, gradient amplitude of tilt angle, theta map, horizontal tilt angle, tilt angle of total horizontal gradient, tilt angle of analytic signal, improved theta map, and total horizontal gradient of improved tilt angle. The effectiveness of each method was estimated on synthetic magnetic data and synthetic gravity anomaly data with and without noise. The obtained results show that the tilt angle of gradient amplitude can detect all the edges more clearly and precisely. The applicability of each method is demonstrated on the aeromagnetic anomaly data from the Zhurihe region of Northeast China, and Bouguer gravity anomaly data from a region of North Vietnam. The results computed by the tilt angle of horizontal gradient were also in accord with the geologic structures of the areas.


Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. D429-D444 ◽  
Author(s):  
Shuang Liu ◽  
Xiangyun Hu ◽  
Tianyou Liu ◽  
Jie Feng ◽  
Wenli Gao ◽  
...  

Remanent magnetization and self-demagnetization change the magnitude and direction of the magnetization vector, which complicates the interpretation of magnetic data. To deal with this problem, we evaluated a method for inverting the distributions of 2D magnetization vector or effective susceptibility using 3C borehole magnetic data. The basis for this method is the fact that 2D magnitude magnetic anomalies are not sensitive to the magnetization direction. We calculated magnitude anomalies from the measured borehole magnetic data in a spatial domain. The vector distributions of magnetization were inverted methodically in two steps. The distributions of magnetization magnitude were initially solved based on magnitude magnetic anomalies using the preconditioned conjugate gradient method. The preconditioner determined by the distances between the cells and the borehole observation points greatly improved the quality of the magnetization magnitude imaging. With the calculated magnetization magnitude, the distributions of magnetization direction were computed by fitting the component anomalies secondly using the conjugate gradient method. The two-step approach made full use of the amplitude and phase anomalies of the borehole magnetic data. We studied the influence of remanence and demagnetization based on the recovered magnetization intensity and direction distributions. Finally, we tested our method using synthetic and real data from scenarios that involved high susceptibility and complicated remanence, and all tests returned favorable results.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. J85-J98
Author(s):  
Shuang Liu ◽  
Xiangyun Hu ◽  
Dalian Zhang ◽  
Bangshun Wei ◽  
Meixia Geng ◽  
...  

Natural remanent magnetization acts as a record of the previous orientations of the earth’s magnetic field, and it is an important feature when studying geologic phenomena. The so-called IDQ curve is used to describe the relationship between the inclination ( I) and declination ( D) of remanent magnetization and the Köenigsberger ratio ( Q). Here, we construct the IDQ curve using data on ground and airborne magnetic anomalies. The curve is devised using modified approaches for estimating the total magnetization direction, e.g., identifying the maximal position of minimal reduced-to-the-pole fields or identifying correlations between total and vertical reduced-to-the-pole field gradients. The method is tested using synthetic data, and the results indicate that the IDQ curve can provide valuable information on the remanent magnetization direction based on available data on the Köenigsberger ratio. Then, the method is used to interpret field data from the Yeshan region in eastern China, where ground anomalies have been produced by igneous rocks, including diorite and basalt, which occur along with magnetite and hematite ore bodies. The IDQ curves for 24 subanomalies are constructed, and these curves indicate two main distribution clusters of remanent magnetization directions corresponding to different structural units of magma intrusion and help identify the lithologies of the magnetic sources in areas covered by Quaternary sediments. The estimated remanent magnetization directions for Cenozoic basalt are consistent with measurements made in paleomagnetism studies. The synthetic and field data indicate that the IDQ curve can be used to efficiently estimate the remanent magnetization direction from a magnetic anomaly, which could help with our understanding of geologic processes in an area.


Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. L21-L30 ◽  
Author(s):  
Soraya Lozada Tuma ◽  
Carlos Alberto Mendonça

We present a three-step magnetic inversion procedure in which invariant quantities with respect to source parameters are inverted sequentially to give (1) shape cross section, (2) magnetization intensity, and (3) magnetization direction for a 2D (elongated) magnetic source. The quantity first inverted (called here the shape function) is obtained from the ratio of the gradient intensity of the total-field anomaly to the intensity of the anomalous vector field. For homogenous sources, the shape function is invariant with source magnetization and allows reconstruction of the source geometry by attributing an arbitrary magnetization to trial solutions. Once determined, the source shape is fixed and magnetization intensity is estimated by fitting the total gradient of the total-field anomaly (equivalent to the amplitude of the analytic signal of magnetic anomaly). Finally, the source shape and magnetization intensity are fixed and the magnetization direction is determined by fitting the magnetic anomaly. As suggested by numerical modeling and real data application, stepped inversion allows checking whether causative sources are homogeneous. This is possible because the shape function from inhomogeneous sources can be fitted by homogeneous models, but a model obtained in this way fits neither the total gradient of the magnetic anomaly nor the magnetic anomaly itself. Such a criterion seems effective in recognizing strongly inhomogeneous sources. Stepped inversion is tested with numerical experiments, and is used to model a magnetic anomaly from intrusive basic rocks from the Paraná Basin, Brazil.


Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. J33-J41 ◽  
Author(s):  
Francisco J. F. Ferreira ◽  
Jeferson de Souza ◽  
Alessandra de B. e S. Bongiolo ◽  
Luís G. de Castro

Magnetic anomaly maps reflect the spatial distribution of magnetic sources, which may be located at different depths and have significantly different physical and geometrical properties, complicating the identification of the corresponding geologic structures. Filtering techniques are frequently used to balance anomalies from shallow and deep sources, and to enhance certain features of interest, such as the edges of the causative bodies. Most methods used for enhancing magnetic data are based on vertical or horizontal derivatives of the magnetic anomalies or combinations of them, and the edges or centers of the sources are identified by maxima, minima, or null values in the transformed data. Normalized derivatives methods are used to equalize signals from sources buried at different depths. We present an edge detector method for the enhancement of magnetic anomalies, which is based on the tilt angle of the total horizontal gradient. The notable features of this method are that it produces amplitude maxima over the source edges and that it equalizes signals from shallow and deep sources. The method is applied to synthetic and real data. The effectiveness of the method is evaluated by comparing it with other edge detection methods that have been previously reported in the literature and that make use of derivatives. The results show that our method is less sensitive to variations in the depth of the sources and that it indicates the position of the edges of causative bodies in a more accurate fashion, when compared with previous methods, even for anomalies due to multiple interfering sources. These results demonstrate that the proposed method is a useful tool for the qualitative interpretation of magnetic data.


2017 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Adedibu Akingboye ◽  
Abimbola Ogunyele

Enhanced magnetic data reductions via the use of various forms of filters were employed for basement classification in parts of Ekiti State. The data reductions and enhancement involve: reduction to equator (RTE), regional and residual, automatic gain control (AGC), downward continuation, upward continuations (1, 2, and 3 km), analytic signal (AS) and horizontal gradient (HG) to map and delineate basement rocks and structures, while surface relief and spectral plot were used to determine depth to top of magnetic sources. The images revealed that the study area is characterized by different lithologies. The rocks evinced lineaments and faults trending NE-SW (G–G’, H–H’, J–J’, K–K’), NNE-SSW, E-W (minor) and approximately N-S, while the dykes are in NW-SE, NNW-SSW directions. The analytic signal (AS) and horizontal gradient (HG) revealed high amplitude reversed Z-like shape as migmatite rocks, differentiating them from the two flanks with low amplitude signals as schist and quartzite schist of Ijero and Aramoko and the granitic intrusive within these migmatised rocks around Ijan, Gbonyin and Ise/Otun. The shaded relief and the spectral plot showed that the total depth to top of magnetic sources ranged from 20m to 1.8km for shallower and deeper sources respectively.


2020 ◽  
Author(s):  
Puy Ayarza ◽  
Juan José Villalaín ◽  
Jose Ramón Martínez Catalán ◽  
Fernando Alvarez Lobato ◽  
Manuela Durán Oreja ◽  
...  

<p><span lang="EN-US">The Eastern Galicia Magnetic Anomaly (EGMA) is one of the most conspicuous and, definitively, the best studied of all the magnetic anomalies in the Central Iberian Arc (CIA). This is probably due to its location, on the thoroughly researched Lugo-Sanabria gneiss dome and to the unique fact that its source rocks crop out in the Xistral Tectonic Window. Multiple studies and models of this anomaly have been carried out in the last 25 years and still, new results keep on shedding more light on its understanding. Rock magnetic analyses, natural remanent magnetization, anisotropy of the magnetic susceptibility and stable isotopes geochemistry carried out on the rocks that produce this anomaly have provided new insights on the processes that led to magnetization and on its age. Results suggest that magnetization of source rocks is a consequence of the increase in oxygen fugacity underwent by metamorphic and magmatic rocks affected by late-Variscan extensional tectonics. Extensional detachments were the pathways that allowed the entrance of fluids that led to syn-tectonic crystallization of magnetite and hematite in S-Type granites. Accordingly, magnetization is not really linked to primary lithologies but mostly to extensional structures. This process took place in the late Carboniferous to earliest Permian, during the Kiaman reverse superchron. Natural remanent magnetization exhibited by hematite-bearing samples confirms the age of the magnetization and adds complexity to the interpretation of the EGMA, where remanence has been often largely ignored or underestimated. Understanding the origin of the EGMA contributes to the interpretation of other anomalies existing in the CIA, also located on thermal domes. Furthermore, it provides new hints to interpret magnetic anomalies located in extensional tectonic contexts worldwide</span></p>


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. J1-J8 ◽  
Author(s):  
Mark Pilkington ◽  
Victoria Tschirhart

Locating the edges of magnetized sources provides a fundamental tool in the geologic interpretation of magnetic field data. Much recent effort has been expended on developing improvements to existing edge-detection methods, resulting in purported increases in accuracy and continuity along edges, reduction of noise effects, and limiting the influences of variable depth to source, magnetization direction, and source dip. These endeavors are valuable and provide interpreters with a wider range of tools to carry out geologic interpretations of aeromagnetic data. Nevertheless, survey parameters such as flight height and line spacing impose limits on the quality of edge locations that can be achieved. Using model studies, we quantify the effects that source size, depth, and interference between sources have on calculated edge locations. Based on the known behavior of established edge detectors, we found that many of the newer approaches offer limited advantages over older methods. Consequently, we studied an example of field mapping of geologic contacts in the Canadian Shield, supported by aeromagnetic data, using calculation of a standard edge detector: the horizontal gradient magnitude of the total magnetic field or TF-hgm. Calculated edge locations estimated from this method appear sufficiently accurate and continuous to provide a solid basis on which the mapping campaign was based and executed successfully.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. K1-K9 ◽  
Author(s):  
Vinicius Hector Abud Louro ◽  
Marta Silvia Maria Mantovani ◽  
Vanessa Biondo Ribeiro

The Morro do Leme laterite nickel deposit lies inside the western border of the Parecis Basin (Brazil). This deposit is characterized by high concentrations of lateritic Ni (about 1.8%) and anomalous contents of Pd, Au, Cu, Na, Co, Zn, and Pt in a peridotite and dunite layered intrusion. Besides the existence of geochemical and drilling data, the 3D distribution in the subsurface of this layered intrusion is still unknown. An airborne magnetic survey revealed three east–west elongated magnetic anomalies, characterized by a significant remanent magnetization. The sources of these anomalies were delimitated laterally and had their depths estimated between 90 and 150 m, using techniques that use derivatives. Further, the total magnetization direction was obtained from a distortion analysis of the magnetic anomalies. All these data were united in an initial model for the 3D inversion of the magnetic data. The total and induced magnetization directions were attributed to the inverted model of 0.12 (SI) susceptibility, allowing indirect estimation of the remanence. The model, defined by the depth, the inversion, and the remanence estimates, linked the intrusion to analogue events in the Rondonian-San Ignácio Province. The results indicated that to explore for laterite Ni, the best locations are the southern part of the main anomaly and in the cover above the two smaller anomalies, whereas to explore for Pd, Au, Cu, Na, Co, Zn, and/or Pt, the indicated region is the central portion of the main anomaly.


Sign in / Sign up

Export Citation Format

Share Document