scholarly journals Imaging the Mediterranean upper mantle by p- wave travel time tomography

1997 ◽  
Vol 40 (4) ◽  
Author(s):  
C. Piromallo ◽  
A. Morelli

Travel times of P-waves in the Euro-Mediterranean region show strong and consistent lateral variations, which can be associated to structural heterogeneity in the underlying crust and mantle. We analyze regional and tele- seismic data from the International Seismological Centre data base to construct a three-dimensional velocity model of the upper mantle. We parameterize the model by a 3D grid of nodes -with approximately 50 km spacing -with a linear interpolation law, which constitutes a three-dimensional continuous representation of P-wave velocity. We construct summary travel time residuals between pairs of cells of the Earth's surface, both inside our study area and -with a broader spacing -on the whole globe. We account for lower mantle heterogeneity outside the modeled region by using empirical corrections to teleseismic travel times. The tomo- graphic images show generai agreement with other seismological studies of this area, with apparently higher detail attained in some locations. The signature of past and present lithospheric subduction, connected to Euro- African convergence, is a prominent feature. Active subduction under the Tyrrhenian and Hellenic arcs is clearly imaged as high-velocity bodies spanning the whole upper mantle. A clear variation of the lithospheric structure beneath the Northem and Southern Apennines is observed, with the boundary running in correspon- dence of the Ortona-Roccamonfina tectonic lineament. The western section of the Alps appears to have better developed roots than the eastern, possibly reflecting à difference in past subduction of the Tethyan lithosphere and subsequent continental collision.

2020 ◽  
Author(s):  
Marcel Paffrath ◽  
Wolfgang Friederich ◽  

<p>We perform a teleseismic P-wave travel time tomography to examine geometry and slab structure of the upper mantle beneath the Alpine orogen. Vertical component data of the extraordinary dense seismic network AlpArray are used which were recorded at over 600 temporary and permanent broadband stations deployed by 24 different European institutions in the greater Alpine region, reaching from the Massif Central to the Pannonian Basin and from the Po plain to the river Main. Mantle phases of 347 teleseismic events between 2015 and 2019 of magnitude 5.5 and higher are evaluated automatically for direct and core diffracted P arrivals using a combination of higher-order statistics picking algorithms and signal cross correlation. The resulting database contains over 170.000 highly accurate absolute P picks that were manually revised for each event. The travel time residuals exhibit very consistent and reproducible spatial patterns, already pointing at high velocity slabs in the mantle.</p><p>For predicting P-wave travel times, we consider a large computational box encompassing the Alpine region up to a depth of 600 km within which we allow 3D-variations of P-wave velocity. Outside this box we assume a spherically symmetric earth and apply the Tau-P method to calculate travel times and ray paths. These are injected at the boundaries of the regional box and continued using the fast marching method. We invert differences between observed and predicted travel times for P-wave velocities inside the box. Velocity is discretized on a regular grid with an average spacing of about 25 km. The misfit reduction reaches values of up to 75% depending on damping and smoothing parameters.</p><p>The resulting model shows several steeply dipping high velocity anomalies following the Alpine arc. The most prominent structure stretches from the western Alps into the Apennines mountain range reaching depths of over 500 km. Two further anomalies extending down to a depth of 300 km are located below the central and eastern Alps, separated by a clear gap below the western part of the Tauern window. Further to the east the model indicates a possible high-velocity connection between the eastern Alps and the Dinarides. Regarding the lateral position of the central and eastern Alpine slabs, our results confirm previous studies. However, there are differences regarding depth extent, dip angles and dip directions. Both structures dip very steeply with a tendency towards northward dipping. We perform various general, as well as purpose-built resolution tests, to verify the capabilities of our setup to resolve slab gaps as well as different possible slab dipping directions.</p>


Author(s):  
Michael L. Begnaud ◽  
Stephen C. Myers ◽  
Brian Young ◽  
James R. Hipp ◽  
Doug Dodge ◽  
...  

Abstract A function of global monitoring of nuclear explosions is the development of Earth models for predicting seismic travel times for more accurate calculation of event locations. Most monitoring agencies rely on fast, distance-dependent one-dimensional (1D) Earth models to calculate seismic event locations quickly and in near real-time. RSTT (Regional Seismic Travel Time) is a seismic velocity model and computer software package that captures the major effects of three-dimensional crust and upper mantle structure on regional seismic travel times, while still allowing for fast prediction speed (milliseconds). We describe updates to the RSTT model using a refined data set of regional phases (i.e., Pn, Pg, Sn, Lg) using the Bayesloc relative relocation algorithm. The tomographic inversion shown here acts to refine the previous RSTT public model (rstt201404um) and displays significant features related to areas of global tectonic complexity as well as further reduction in arrival residual values. Validation of the updated RSTT model demonstrates significant reduction in median epicenter mislocation (15.3 km) using all regional phases compared to the iasp91 1D model (22.1 km) as well as to the current station correction approach used at the Comprehensive Nuclear-Test-Ban Treaty Organization International Data Centre (18.9 km).


2014 ◽  
Vol 6 (1) ◽  
pp. 985-1021
Author(s):  
I. Janutyte ◽  
E. Kozlovskaya ◽  
M. Majdanski ◽  
P. H. Voss ◽  
M. Budraitis ◽  
...  

Abstract. The presented study is a part of the passive seismic experiment PASSEQ 2006–2008 which took place around the Trans-European Suture Zone (TESZ) from May 2006 to June 2008. The dataset of 4195 manually picked arrivals of teleseismic P waves of 101 earthquakes (EQs) recorded in the PASSEQ seismic stations deployed to the east of the TESZ was inverted using the non-linear teleseismic tomography algorithm TELINV. Two 3-D crustal models were used to estimate the crustal travel time (TT) corrections. As a result, we obtained a model of P wave velocity variations in the upper mantle beneath the TESZ and the EEC. In the study area beneath the craton we observed 5 to 6.5% higher and beneath the TESZ about 4% lower seismic velocities compared to the IASP91 velocity model. We found the seismic lithosphere-asthenosphere boundary (LAB) beneath the TESZ at a depth of about 180 km, while we observed no seismic LAB beneath the EEC. The inversion results obtained with the real and the synthetic datasets indicated a ramp shape of the LAB in the northern TESZ where we observed values of seismic velocities close to those of the craton down to about 150 km. The lithosphere thickness in the EEC increases going from the TESZ to the NE from about 180 km beneath Poland to 300 km or more beneath Lithuania. Moreover, in western Lithuania we possibly found an upper mantle dome. In our results the crustal units are not well resolved. There are no clear indications of the features in the upper mantle which could be related with the crustal units in the study area. On the other hand, at a depth of 120–150 km we possibly found a trace of a boundary of proposed palaeosubduction zone between the East Lithuanian Domain (EL) and the West Lithuanian Granulite Domain (WLG). Also, in our results we may have identified two anorogenic granitoid plutons.


2021 ◽  
Author(s):  
Marcel Paffrath ◽  
Wolfgang Friederich ◽  

<p>We perform a teleseismic P-wave travel time tomography to examine geometry and slab structure of the upper mantle beneath the Alpine orogen. Vertical component data of the extraordinary dense seismic network AlpArray are used which were recorded at over 600 temporary and permanent broadband stations deployed by 24 different European institutions in the greater Alpine region, reaching from the Massif Central to the Pannonian Basin and from the Po plain to the river Main. Mantle phases of 370 teleseismic events between 2015 and 2019 of magnitude 5.5 and higher are evaluated automatically for direct and core diffracted P arrivals using a combination of higher-order statistics picking algorithms and signal cross correlation. The resulting database contains over 170.000 highly accurate absolute P picks that were manually revised for each event. The travel time residuals exhibit very consistent and reproducible spatial patterns, already pointing at high velocity slabs in the mantle.</p><p>For predicting P-wave travel times we consider a large computational box encompassing the Alpine region up to a depth of 600 km within which we allow 3D-variations of P-wave velocity. To account for influences of the strongly heterogeneous crust that cannot be resolved with teleseismic data, we integrate a complex three-dimensional crustal model directly into our model. Outside the box we assume a spherically symmetric earth and apply the Tau-P method to calculate travel times and ray paths. These are injected at the boundaries of the regional box and continued using the fast marching method (Rawlinson et al. 2005). We invert differences between observed and predicted traveltimes for P-wave velocities inside the box. Velocity is discretized on a regular grid with a spacing of about 25x25x15 km. The misfit reduction reaches values of over 80% depending on damping and smoothing parameters.</p><p>The resulting model shows several steeply dipping high velocity anomalies following the Alpine arc. The most prominent structure stretches from the western Alps into the Apennines mountain range reaching depths of over 500 km. Two further anomalies of high complexity extending down to a depth of 300 km are located below the central and eastern Alps, both being detached from the lithosphere and separated by a clear gap below the western part of the Tauern window. The central anomaly shows mainly southwards dipping, whereas the eastern anomaly is mainly dipping to the northeast. We compare our results to former studies, confirming lateral positions of the anomalies. However, the new results can benefit from the superior resolution capabilities of the dense AlpArray seismic network, providing more accurate insights into depth extent, dip angle and directions. We perform various general, as well as purpose-built resolution tests, to verify the capabilities of our setup to resolve slab gaps as well as different possible slab dipping directions.</p>


1977 ◽  
Vol 67 (4) ◽  
pp. 1061-1074 ◽  
Author(s):  
B. J. Mitchell ◽  
C. C. Cheng ◽  
W. Stauder

Abstract Relative travel-time residuals of teleseismic P waves recorded by the Saint Louis University network vary over a range of about 1.5 sec. The residuals depend on both position within the network and azimuthal direction to the source, the largest positive anomalies occurring at stations situated in the most seismically active region. An inversion of these data using the method of Aki, Christoffersson, and Husebye (1976a) yields a three-dimensional model of velocity variation beneath the network. The most conspicuous feature of the derived model is a roughly cylindrical zone of low velocities at least 5 per cent lower than surrounding regions, which extends from near the surface to depths of 150 km or greater. Although the resolution for this model is poor for the crust, it is quite good for the upper mantle, where the zone of low velocities appears to angle toward the west with increasing depth.


Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 821-836 ◽  
Author(s):  
I. Janutyte ◽  
E. Kozlovskaya ◽  
M. Majdanski ◽  
P. H. Voss ◽  
M. Budraitis ◽  
...  

Abstract. The presented study is a part of the passive seismic experiment PASSEQ 2006–2008, which took place around the Trans-European Suture Zone (TESZ) from May 2006 to June 2008. The data set of 4195 manually picked arrivals of teleseismic P waves of 101 earthquakes (EQs) recorded in the seismic stations deployed to the east of the TESZ was inverted using the non-linear teleseismic tomography algorithm TELINV. Two 3-D crustal models were used to estimate the crustal travel time (TT) corrections. As a result, we obtain a model of P-wave velocity variations in the upper mantle beneath the TESZ and the East European Craton (EEC). In the study area beneath the craton, we observe up to 3% higher and beneath the TESZ about 2–3% lower seismic velocities compared to the IASP91 velocity model. We find the seismic lithosphere–asthenosphere boundary (LAB) beneath the TESZ at a depth of about 180 km, while we observe no seismic LAB beneath the EEC. The inversion results obtained with the real and the synthetic data sets indicate a ramp shape of the LAB in the northern TESZ, where we observe values of seismic velocities close to those of the craton down to about 150 km. The lithosphere thickness in the EEC increases going from the TESZ to the NE from about 180 km beneath Poland to 300 km or more beneath Lithuania. Moreover, in western Lithuania we find an indication of an upper-mantle dome. In our results, the crustal units are not well resolved. There are no clear indications of the features in the upper mantle which could be related to the crustal units in the study area. On the other hand, at a depth of 120–150 km we indicate a trace of a boundary of proposed palaeosubduction zone between the East Lithuanian Domain (EL) and the West Lithuanian Granulite Domain (WLG). Also, in our results, we may have identified two anorogenic granitoid plutons.


2021 ◽  
Author(s):  
Francesco Rappisi ◽  
Brandon Paul Vanderbeek ◽  
Manuele Faccenda

<p>Teleseismic travel-time tomography remains one of the most popular methods for obtaining images of Earth's upper mantle. While teleseismic shear phases, most notably SKS, are commonly used to infer the anisotropic properties of the upper mantle, anisotropic structure is often ignored in the construction of body wave shear velocity models. Numerous researchers have demonstrated that neglecting anisotropy in P-wave tomography can introduce significant imaging artefacts that could lead to spurious interpretations. Less attention has been given to the effect of anisotropy on S-wave tomography partly because, unlike P-waves, there is not a ray-based methodology for modelling S-wave travel-times through anisotropic media. Here we evaluate the effect that the isotropic approximation has on tomographic images of the subsurface when shear waves are affected by realistic mantle anisotropy patterns. We use SPECFEM to model the teleseismic shear wavefield through a geodynamic model of subduction that includes elastic anisotropy predicted from micromechanical models of polymineralic aggregates advected through the simulated flow field. We explore how the chosen coordinates system in which S-wave arrival times are measured (e.g., radial versus transverse) affects the imaging results. In all cases, the isotropic imaging assumption leads to numerous artefacts in the recovered velocity models that could result in misguided inferences regarding mantle dynamics. We find that when S-wave travel-times are measured in the direction of polarisation, the apparent anisotropic shear velocity can be approximated using sinusoidal functions of period pi and two-pi. This observation allows us to use ray-based methods to predict S-wave travel-times through anisotropic models. We show that this parameterisation can be used to invert S-wave travel-times for the orientation and strength of anisotropy in a manner similar to anisotropic P-wave travel-time tomography. In doing so, the magnitude of imaging artefacts in the shear velocity models is greatly reduced.</p>


1977 ◽  
Vol 67 (1) ◽  
pp. 33-42
Author(s):  
Mark E. Odegard ◽  
Gerard J. Fryer

Abstract Equations are presented which permit the calculation of distances, travel times and intensity ratios of seismic rays propagating through a spherical body with concentric layers having velocities which vary linearly with radius. In addition, a method is described which removes the infinite singularities in amplitude generated by second-order discontinuities in the velocity profile. Numerical calculations involving a reasonable upper mantle model show that the standard deviations of the errors for distance, travel time and intensity ratio are 0.0046°, 0.057 sec, and 0.04 dB, respectively. Computation time is short.


1991 ◽  
Vol 81 (2) ◽  
pp. 508-523
Author(s):  
Jim Mori

Abstract Event record sections, which are constructed by plotting seismograms from many closely spaced earthquakes recorded on a few stations, show multiple free-surface reflections (PP, PPP, PPPP) of the P wave in the Imperial Valley, California. The relative timing of these arrivals is used to estimate the strength of the P-wave velocity gradient within the upper 5 km of the sediment layer. Consistent with previous studies, a velocity model with a value of 1.8 km/sec at the surface increasing linearly to 5.8 km/sec at a depth of 5.5 km fits the data well. The relative amplitudes of the P and PP arrivals are used to estimate the source depth for the aftershock distributions of the Elmore Ranch and Superstition Hills main shocks. Although the depth determination has large uncertainties, both the Elmore Ranch and Superstition Hills aftershock sequences appear to have similar depth distribution in the range of 4 to 10 km.


2010 ◽  
Vol 28 (1) ◽  
Author(s):  
A BOTTARI ◽  
B. FEDERICO

The observed travel-times of the P-waves for twenty shallow, intermediate, and deep earthquakes, with epicenters in the Mediterranean area, are used in order to analyze some characteristics of the upper mantle. A first- order discontinuity, identifiable as the "20° discontinuity", is found at a depth of 505 ± 16 km in the area underneath the Mediterranean basin. The velocity contrast is equal to 12% (above T'= 8.9 km/sec; below V= 9.97 km/sec). Assuming that this discontinuity gives rise to reflected P-waves (PdP), the travel times of these waves are calculated for various hypocentral depths. The observation of impulses identified as PdP on the seismograms of Messina supports this hypothesis. This result and its implications are discussed in the contest of the conclusions of various authors who locate a P-wave velocity-discontinuity at different depths between 400 and 580 km. Finally, particular emphasis is given to the regional character of the analyzed structures in question.


Sign in / Sign up

Export Citation Format

Share Document