scholarly journals P- waves reflected from the "20" discontinuity" beneath the Mediterranean region

2010 ◽  
Vol 28 (1) ◽  
Author(s):  
A BOTTARI ◽  
B. FEDERICO

The observed travel-times of the P-waves for twenty shallow, intermediate, and deep earthquakes, with epicenters in the Mediterranean area, are used in order to analyze some characteristics of the upper mantle. A first- order discontinuity, identifiable as the "20° discontinuity", is found at a depth of 505 ± 16 km in the area underneath the Mediterranean basin. The velocity contrast is equal to 12% (above T'= 8.9 km/sec; below V= 9.97 km/sec). Assuming that this discontinuity gives rise to reflected P-waves (PdP), the travel times of these waves are calculated for various hypocentral depths. The observation of impulses identified as PdP on the seismograms of Messina supports this hypothesis. This result and its implications are discussed in the contest of the conclusions of various authors who locate a P-wave velocity-discontinuity at different depths between 400 and 580 km. Finally, particular emphasis is given to the regional character of the analyzed structures in question.

1934 ◽  
Vol 24 (2) ◽  
pp. 81-99
Author(s):  
Perry Byerly

Summary The travel-time curve of P for the Texas earthquake of August 16, 1931, shows that there is a definite break in the travel-time curve near Δ = 16°. This is interpreted as indicating a first-order discontinuity at a depth of about 300 kilometers. Another break in the travel-time curve at Δ = 25° is strongly suggested. Beyond Δ = 75° the curve has two branches, the lower following most existing curves, the upper following the Montana curve which latter seems to be a usual one for American earthquakes. This part of the curve is interpreted as indicating that the discontinuity at depth about 2,400 kilometers is a first-order one at which the speed of P waves drops discontinuously. From the direction of first motion on the records it is concluded that a sufficient source would have been motion on a fault of strike about N 35° W, the movement being up on the easterly side and down on the westerly side. The travel times of all waves read on the records are plotted on graphs. The scattering of all waves after P is marked.


1969 ◽  
Vol 59 (3) ◽  
pp. 1201-1212
Author(s):  
David E. James ◽  
I. Selwyn Sacks ◽  
Eduardo Lazo L. ◽  
Pablo Aparicio G.

abstract Mathematical instability in four-parameter least squares hypocenter solutions arises primarily from the fact that the four computed variables—origin time (T0), focal depth (h), latitude (θ), and longitude (λ)—are not strictly independent. Specifically, T0 exhibits a non-independent relationship with the geometric parameters. For small networks (< 10–15 stations), the lack of independence between T0 and the other variables results in unstable least-squares solutions. This instability is manifest most clearly by the fact that different station subsets of the observational network produce significantly different solutions for the same earthquake. The instability can be eliminated by computing T0 independently for each station using the formula ( T 0 ) i = ( T p ) i − V k ( T s − p ) i V p , where Tp = P-wave arrival time, Vk = S-P velocity, Vp = P-wave velocity, and Ts-p = time interval between P and S arrivals. An average value of T0 can be obtained from the individually calculated origin times and the P-wave travel times calculated. The variables ϕ, λ and z are then computed by the usual least-squares procedure using P-wave travel times only. The method is iterative and an average T0 is recalculated in the course of each iteration. Fundamental properties of travel times within the Earth impose definite limitations upon the accuracy of the locations. Low values of the derivative dTp/dh at epicentral distances of a few degrees introduce a large uncertainty in focal depth, particularly for shallow (0–60 km) earthquakes. There is normally little error in epicenter, however, even for solutions in which depth is poorly determined. The dimensions and geometric configuration of the network in relation to the epicenter and the proximity of the epicenter to any one station are controlling factors in predicting the minimum uncertainty for any given hypocenter solution.


2020 ◽  
Vol 8 (6) ◽  
pp. 1785-1794

The objective of the current investigations is to estimate the dynamic geotechnical properties necessary for evaluating the conditions of the subsurface in order to make better decisions for economic and safe designs of the proposed structures at a Steel Rolling Factory, Ataqa Industrial Area, Northwestern Gulf of Suez, Egypt. To achieve this purpose, four seismic refraction profiles were conducted to measure the velocity of primary seismic waves (P-waves) and four profiles were conducted using Multichannel Analysis of Surface Waves (MASW) technique in the same locations of refraction profiles to measure the velocity of shear waves (S-waves). SeisImager/2D Software Package was used in the analysis of the measured data. Data processing and interpretation reflect that the subsurface section in the study area consists of two layers, the first layer is a thin surface layer ranges in thickness from 1 to 4 meters with P-wave velocity ranges from 924 m/s to 1247 m/s and S-wave velocity ranges from 530 m/s to 745 m/s. The second layer has a P-wave velocity ranges from 1277 m/s to 1573 m/s and the S-wave velocity ranges from 684 m/s to 853 m/s. Geotechnical parameters were calculated for both layers. Since elastic moduli such as Poisson’s ratio, shear modulus, Young’s modulus, and bulk’s modulus were calculated. Competence scales such as material index, stress ratio, concentration index, and density gradient were calculated also. In addition, the ultimate and allowable bearing capacities


2020 ◽  
Vol 9 (2) ◽  
pp. 83-89
Author(s):  
Muhammad Burhannudinnur ◽  
Suryo Prakoso

Several researchers have arranged an approach to estimating the P-wave velocity, but none of them specifically relates to the pore attribute. Pore attributes are one of the main factors that affect pore complexity and rock quality. If P-wave velocity is influenced by the pore complexity, then it should be possible to arrange a simple relationship of P-wave velocity with the pore attribute. This study is intended to construct an empirical relationship of P-wave velocity with a combination of pore attributes, shape factor, and tortuosity (Fsτ) so that the P-wave velocity can be easily estimated. This study used two sandstone datasets from 2 different basins, which are the northern part of the West Java basin and the Kutai basin. This research shows that a simple empirical equation can be arranged to relate the P-wave velocity with Fsτ. This relationship provides a good correlation coefficient. It offers an easy and straightforward approach to estimating P-wave


Geophysics ◽  
1966 ◽  
Vol 31 (3) ◽  
pp. 562-569 ◽  
Author(s):  
J. Cl. De Bremaecker ◽  
Richard H. Godson ◽  
Joel S. Watkins

The amplitudes of the P head wave were measured on an aa lava flow, on unconsolidated cinders, and on compact limestone. The data are satisfied by the equation [Formula: see text], where A is the amplitude, d the distance, [Formula: see text] the attenuation coefficient for P waves, ν the frequency, and α the P wave velocity. By assuming a complex shear modulus μ* but a real λ one finds [Formula: see text], where β is the shear wave velocity. This formula is in reasonable agreement with published data.


1974 ◽  
Vol 64 (5) ◽  
pp. 1501-1507 ◽  
Author(s):  
D. J. Sutton

Abstract A fall in P-wave velocity before the Gisborne earthquake of March 4, 1966 is indicated by arrival-time residuals of P waves from distant earthquakes recorded at the Gisborne seismograph station. Residuals were averaged over 6-month intervals from 1964 to 1968 and showed an increase of about 0.5 sec, implying later arrival times. The change began about 480 days before the earthquake. This precursory time interval is about that expected for an earthquake of this magnitude (ML = 6.2), but unlike most other reported instances, there was no obvious delay between the return of the velocity to normal and the occurrence of the earthquake. Similar analyses were carried out over the same period for two other New Zealand seismograph stations; at Karapiro there was no significant variation in mean residuals, and at Wellington the scatter was too large for the results to be meaningful. The Gisborne earthquake had a focus in the lower crust, about 25 km deep and was deeper than other events for which such precursory drops in P-wave velocity have been reported.


2020 ◽  
Author(s):  
Gaye Bayrakci ◽  
Timothy A. Minshull ◽  
Jonathan M. Bull ◽  
Timothy J. Henstock ◽  
Giuseppe Provenzano ◽  
...  

<p>Scanner pockmark is an active and continuous methane venting seafloor depression of ~ 900 x 450 m wide and 22 m deep. It is located in the northern North Sea, within the Witch Ground basin where the seafloor and shallow sediments are heavily affected by pockmarks and paleo-pockmarks of various sizes. A seismic chimney structure is present below the Scanner pockmark. It is expressed as a near-vertical column of acoustic blanking below a bright zone of gas-bearing sediments. Seismic chimneys are thought to host connected vertical fractures which may be concentric within the chimney and align parallel to maximum compression outside it. The crack geometry modifies the seismic velocities, and hence, the anisotropy measured inside and outside of the chimney is expected to be different.</p><p> </p><p>We carried out anisotropic P-wave tomography with a GI-gun wide-angle dataset recorded by the 25 Ocean Bottom Seismometers (OBSs) of the CHIMNEY experiment (2017). Travel times of more than 60,000 refracted phases propagating within a volume of 4 x 4 x 2 km were inverted for P-wave velocity and the direction and degree of P-wave anisotropy. The grid is centred on the Scanner Pockmark and has a y-axis parallel to -34<sup>o</sup> N. The horizontal node interval is denser in the zone covered by the OBSs and the vertical node interval is denser near the seabed. A 3 iteration inversion leads to a chi<sup>2</sup> misfit value of 1 and a root-mean-square misfit of <10 ms. The results show a maximum P-wave anisotropy of 5%, and higher degrees of anisotropy correlates well with higher velocities. The fast P-wave velocity orientation, a proxy for fracture orientations, is 46<sup>o</sup> N. The top of the chimney possibly links a bright spot mapped at 270 ms in two way travel time using RMS amplitudes of MCS data, to the surface gas emission. The bright spot corresponds to low tomographic P-wave velocity and anisotropy, suggesting that gas is located in a zone with unaligned fractures or porosity. This observation is in good agreement with early multi-channel seismic data interpretations which suggested that the gas is trapped within a sandy clay layer, the Ling Bank Formation, capped by an upper clay layer, the Coal Pit Formation. In the next step, we will invert the travel-times of reflected phases in order to increase the image resolution.  </p>


1997 ◽  
Vol 40 (1) ◽  
Author(s):  
B. Alessandrini ◽  
L. Beranzoli ◽  
G. Drakatos ◽  
C. Falcone ◽  
G. Karantonis ◽  
...  

We present a tomographic view of the crust and uppermost mantle beneath the Central Mediterranean area obtained from P-wave arrival times of regional earthquakes selected from the ISC bulletin. The P-wave velocity anomalies are obtained using Thurber's algorithm that jointly relocates earthquakes and computes velocity adjustments with respect to a starting model. A specific algorithm has been applied to achieve a distribution of epicentres as even as possible. A data set of 1009 events and 49072 Pg and Pn phases was selected. We find a low velocity belt in the crust, evident in the map view at 25 km of depth, beneath the Hellenic arc. A low velocity anomaly extends at 40 km of depth under the Aegean back arc basin. High velocities are present at Moho depth beneath the Ionian sea close to the Calabrian and Aegean arcs. The tomographic images suggest a close relationship between P-wave velocity pattern and the subduction systems of the studied area.


Sign in / Sign up

Export Citation Format

Share Document