scholarly journals Neutrophil extracellular traps in health and disease

Author(s):  
P Hasler ◽  
S Giaglis ◽  
S Hahn
Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2130
Author(s):  
Shrikant R. Mulay ◽  
Hans-Joachim Anders

Neutrophils are first responders of antimicrobial host defense and sterile inflammation, and therefore, play important roles during health and disease [...]


2020 ◽  
Vol 319 (4) ◽  
pp. L661-L669
Author(s):  
Samir Gautam ◽  
Yannick Stahl ◽  
Grant M. Young ◽  
Rebecca Howell ◽  
Avi J. Cohen ◽  
...  

The past two decades have witnessed a resurgence in neutrophil research, inspired in part by the discovery of neutrophil extracellular traps (NETs) and their myriad roles in health and disease. Within the lung, dysregulation of neutrophils and NETosis have been linked to an array of diseases including pneumonia, cystic fibrosis, acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and severe asthma. However, our understanding of pathologic neutrophil responses in the lung remains incomplete. Two methodologic issues have contributed to this gap: first, an emphasis on studying neutrophils from blood rather than the lung and second, the technical difficulties of interrogating neutrophil responses in mice, which has largely restricted basic murine research to specialized laboratories. To address these limitations, we have developed a suite of techniques for studying neutrophil effector functions specifically in the mouse lung. These include ex vivo assays for phagocytosis and NETosis using bronchoalveolar neutrophils and in situ evaluation of NETosis in a murine model of pneumonia. Throughout, we have prioritized technical ease and robust, quantitative readouts. We hope these assays will help to standardize research on lung neutrophils and improve accessibility to this burgeoning field.


2016 ◽  
Vol Volume 112 (Number 1/2) ◽  
Author(s):  
Jan G. Nel ◽  
Annette J. Theron ◽  
Roger Pool ◽  
Chrisna Durandt ◽  
Gregory R. Tintinger ◽  
...  

Abstract The human innate immune system is indispensable for protection against potentially invasive microbial and viral pathogens, either neutralising them or containing their spread until effective mobilisation of the slower, adaptive (specific), immune response. Until fairly recently, it was believed that the human innate immune system possessed minimal discriminatory activity in the setting of a rather limited range of microbicidal or virucidal mechanisms. However, recent discoveries have revealed that the innate immune system possesses an array of novel pathogen recognition mechanisms, as well as a resourceful and effective alternative mechanism of phagocyte (predominantly neutrophil)-mediated, anti-infective activity known as NETosis. The process of NETosis involves an unusual type of programmed, purposeful cell death, resulting in the extracellular release of a web of chromatin heavily impregnated with antimicrobial proteins. These structures, known as neutrophil extracellular traps (NETs), immobilise and contribute to the eradication of microbial pathogens, ensuring that the anti-infective potential of neutrophils is sustained beyond the lifespan of these cells. The current review is focused on the mechanisms of NETosis and the role of this process in host defence. Other topics reviewed include the potential threats to human health posed by poorly controlled, excessive formation of NETs, specifically in relation to development of autoimmune and cardiovascular diseases, as well as exacerbation of acute and chronic inflammatory disorders of the airways.


2018 ◽  
Vol 10 (5-6) ◽  
pp. 414-421 ◽  
Author(s):  
Volker Brinkmann

Nearly 15 years after the first description of neutrophil extracellular traps (NETs), our knowledge concerning this structure has expanded considerably. Initially, NETs were considered solely an elaborate function of the innate immune system to combat invading microorganisms. Successively it became clear that NETs have farther-reaching capabilities. They are involved in a series of pathophysiological mechanisms ranging from inflammation to thrombosis where they fulfill essential functions when produced at the right site and the right time but can have a serious impact when generation or clearance of NETs is inadequately controlled. This review provides a concise overview on the far-reaching functions of NETs in health and disease.


Author(s):  
Lei Xie ◽  
Yixiong Ma ◽  
Geert Opsomer ◽  
Osvaldo Bogado Pascottini ◽  
Yandong Guan ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1469
Author(s):  
Carolina Domínguez-Díaz ◽  
Gael Urait Varela-Trinidad ◽  
Germán Muñoz-Sánchez ◽  
Karla Solórzano-Castanedo ◽  
Karina Elizabeth Avila-Arrezola ◽  
...  

Neutrophils are the most abundant circulating innate immune cells and comprise the first immune defense line, as they are the most rapidly recruited cells at sites of infection or inflammation. Their main microbicidal mechanisms are degranulation, phagocytosis, cytokine secretion and the formation of extracellular traps. Neutrophil extracellular traps (NETs) are a microbicidal mechanism that involves neutrophil death. Since their discovery, in vitro and in vivo neutrophils have been challenged with a range of stimuli capable of inducing or inhibiting NET formation, with the objective to understand its function and regulation in health and disease. These networks composed of DNA and granular components are capable of immobilizing and killing pathogens. They comprise enzymes such as myeloperoxidase, elastase, cathepsin G, acid hydrolases and cationic peptides, all with antimicrobial and antifungal activity. Therefore, the excessive formation of NETs can also lead to tissue damage and promote local and systemic inflammation. Based on this concept, in this review, we focus on the role of NETs in different infectious and inflammatory diseases of the mucosal epithelia and skin.


Sign in / Sign up

Export Citation Format

Share Document