scholarly journals Smart Health Monitoring and Management Using Internet of Things, Artificial Intelligence with Cloud Based Processing

: Smart health monitoring system is a system that shortens the distance between a patient and the relevant medical organization. These systems have rapidly evolved during the past two decades and have the potential to change the way health cases are currently delivered. The Internet of Things (IoT) is an innovation for smart health management. It provides monitoring patients remotely and guarantees giving patients the medication and getting complete health care without the latter getting infected. As we know that the NovelCorona-virus also known as covid-19 expanded its impacts from China and still expands its catchment, national as well as international measures are being taken to contain the outbreak such as the placing of lockdown in nations. As a result, many people are being infected making the hospital incapable of providing proper healthcare. This paper proposes a smart health system that monitors the patients holding the coronavirus remotely and to protect the lives of the health service members (like physicians, nurses) from infection. This smart system observes patients by using sensors, to gather rich information every minute seconds. This benefits the patient as well as the service members because the physicians can observe the patient while freeing up beds in the hospitals for the critical cases.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sung-Phil Heo ◽  
Suyong Jeong

The Internet of things (IoT) helps our everyday lives such as by monitoring objects and tracking behaviors in various settings, but studies on enhancing the bathroom experience are rare. This article describes full details about development and implementation of a smart health-monitoring bidet based on our study published previously in the conference. A smart bidet system is designed to monitor the users’ health through several contact-type sensors, such as pressure, oxygen, and thermometer. The system is equipped with a built-in artificial intelligence software platform and is designed to detect anal and spinal diseases. The attached sensors normally operate under waterproof conditions: we tested their performances under X6 international protection marking conditions. These devices were designed to operate properly even in extremely waterproof conditions. The temperature, pressure, and oxygen sensors of the bidet system had error rates of about 4.1, 0.6, and 1.1 percent, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lei Ru ◽  
Bin Zhang ◽  
Jing Duan ◽  
Guo Ru ◽  
Ashutosh Sharma ◽  
...  

The technological advent in smart sensing devices and the Internet has provided practical solutions in various sectors of networking, public and private sector industries, and government organizations worldwide. This study intends to combine the Internet of Things (IoT) technology with health monitoring to make it personalized and timely through allowing the interconnection between the devices. This work is aimed at exploring various wearable health monitoring modules that people wear to monitor heart rate, blood pressure, pulse, body temperature, and physiological information. The information is acquired using the wireless sensor to create a health monitoring system. The data is integrated using the Internet of Things for processing, connecting, and computing to achieve real-time monitoring. The temperature of three people measured by the temperature thermometer is 36.4, 36.7, and 36.5 (°C), respectively, and the average acquired by the monitoring system of the three people is 36.5, 36.4, and 36.5 (°C), respectively, indicating that the system demonstrated relatively accurate and stable testability. The user’s ECG is displayed clearly and conveniently using the ECG acquisition system. The pulse rate of the three people tested by the system is 78, 78, and 79 (times/min), respectively, similar to the medical pulse meter results. The physiological information acquired using the semantic recognition, matching system, and character matching system is relatively accurate. It concludes that the human health monitoring system based on the Internet of Things can provide people with daily health management, instrumental in heightening health service quality and level.


Author(s):  
A. Ramya Visalatchi ◽  
R. Yogamathi

One among the various applications enabled with the aid of the Internet of Things (IoT) is wearable technology, where smart and pervasive health care is an important one. Network sensors, either worn on the frame or embedded in our environments; make possible the collection of rich information of our physical and mental health. Captured on a continuous basis, aggregated, and efficiently supervised, such statistics can bring about a positive transformation in health care system


2015 ◽  
Vol 2015 (1) ◽  
pp. 000239-000244 ◽  
Author(s):  
Steffen Kroehnert ◽  
José Campos ◽  
André Cardoso ◽  
Eoin O'Toole ◽  
Abel Janeiro ◽  
...  

The next big wave, the Internet of Things or Internet of Everything (IoT/IoE) is on the way. What does that mean for semiconductor packaging, assembly and test? What are the requirements? What solutions can be provided? The market will be wide and fragmented. Many different solutions will be needed. Flexibility and the capability to customize system solutions will be crucial. The fact is, it will be all about smart system integration, integration of sensors, MEMS, connectivity and memory: more functionality on less space in small and thin System-in-Package (SiP) and Package-on-Package (PoP). There will not be one specific packaging technology for IoT/IoE, and no new “IoT/IoE Packaging Technology”. The toolbox is here already, and further features required to meet the needs of future IoT/IoE modules are under development. That is actually good news, as the cost pressure will be high, and materialization of existing manufacturing environment, of mature and yielding packaging technologies will be a key for success.


2020 ◽  
Vol 10 (10) ◽  
pp. 3365
Author(s):  
Muhammad Waleed ◽  
Tai-Won Um ◽  
Tariq Kamal ◽  
Aftab Khan ◽  
Adil Iqbal

Precisely measuring the work area of agriculture farm machinery is important for performing the authentication of machinery usage, better allocation of resources, measuring the effect of machinery usage on the yield, usage billing and driver’s behaviour. The manual measurement, which is a common practice is an error-prone and time-consuming process. The irregular fields make it even more difficult to calculate the work area. An automatic solution that uses smart technology and algorithms to precisely calculate the work area is crucial for the advancement of agriculture. In this work, we have developed a smart system that utilizes the Internet of Things (IoT), Global Positioning System (GPS) and Artificial Intelligence (AI) that records the movement of agriculture machinery and use it to measure the precise work area of its usage. The system couples the nearest neighbourhood algorithms with Contact-based mechanisms to find the precise work area for different shaped fields and activities. The system was able to record the movement of machinery and calculate its work area, regardless of how many times the machinery runs through a particular field. Our evaluation shows that the system was able to precisely find the work boundaries and calculate the area with a maximum of 9% error for irregular shapes.


2019 ◽  
Vol 7 (2) ◽  
pp. 21-40 ◽  
Author(s):  
Parthasarathy Panchatcharam ◽  
Vivekanandan S.

Wellbeing is fundament requirement. What's more, it is human appropriate to get quality health care. These days, India is confronting numerous medical problems in light of fewer assets. This survey article displays the idea of solving health issues by utilizing a recent innovation, the Internet of Things (IOT). The Internet of Things with their developing interdisciplinary applications has changed our lives. Smart health care being one such IoT application interfaces brilliant gadgets, machines, patients, specialists, and sensors to the web. At long last, the difficulties and prospects of the improvement of IoT-based medicinal service frameworks are talked about in detail. This review additionally summarizes the security and protection worries of IoT, administrations and application of IoT and smart healthcare services that have changed the customary medicinal services framework by making healthcare administration more proficient through their applications.


2019 ◽  
Vol 2 (1) ◽  
pp. 43-60 ◽  
Author(s):  
N. Sudhakar Yadav ◽  
K. G. Srinivasa ◽  
B. Eswara Reddy

A software framework is a reusable design that requires various software components to function almost out of the box. To specify a framework, the creator must specify the different components that form the framework and how to instantiate them. Also, the communication interfaces between these various components must be defined. In this article, the authors propose such a framework based on the internet of things (IoT) for developing applications for handling emergencies of some kind. This article demonstrates the usage of the framework by explaining various applications such as tracking the status of autistic students, analytics on medical records to detect and mitigate chronic heart diseases in the Indian demographic, prediction of Parkinson's disease, determining the type of disease that corresponds to the dermatology field, and health monitoring and management using internet of things (IoT) sensing.


Sign in / Sign up

Export Citation Format

Share Document