scholarly journals Design of a Solar Modified Greenhouse Prototype

In India there are variety of crops and fruits produced every year. The process of drying in India is generally performed in direct solar radiation also known as solar drying, but this method is not effective. The higher content of moisture in the crops and fruits damage on large scale. Thus, moisture content should be controlled by an effective way to avoid further loss of crops and fruits. The innovative technique i.e. Solar Greenhouse can be an effective way to avoid loss of crops and fruits, thereby improving the lifecycle. In this study the design parameter of solar modified greenhouse prototype is discussed. The various parameters in the design of greenhouse are glazing materials, energy conservation, ventilation methods and solar orientation. With the help of solar modified greenhouse prototype, it is possible to carry out experimental validation for drying of crops and fruits assisted with Phase Change Material as a Thermal Energy Storage.

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1948 ◽  
Author(s):  
Xiaofeng Guo ◽  
Alain Pascal Goumba ◽  
Cheng Wang

Large-scale solar heating for the building sector requires an adequate Thermal Energy Storage (TES) strategy. TES plays the role of load shifting between the energy demand and the solar irradiance and thus makes the annual production optimal. In this study, we report a simplified algorithm uniquely based on energy flux, to evaluate the role of active TES on the annual performance of a large-scale solar heating for residential thermal energy supply. The program considers different types of TES, i.e., direct and indirect, as well as their specifications in terms of capacity, storage density, charging/discharging limits, etc. Our result confirms the auto-regulation ability of indirect (latent using Phase Change Material (PCM), or Borehole thermal storage (BTES) in soil) TES which makes the annual performance comparable to that of direct (sensible with hot water) TES. The charging and discharging restrictions of the latent TES, until now considered as a weak point, could retard the achievement of fully-charged situation and prolong the charging process. With its compact volume, the indirect TES turns to be promising for large-scale solar thermal application.


2018 ◽  
Vol 49 (6) ◽  
pp. 509-528 ◽  
Author(s):  
Orawan Aumporn ◽  
Belkacem Zeghmati ◽  
Xavier Chesneau ◽  
Serm Janjai

Author(s):  
Tonny Tabassum Mainul Hasan ◽  
Latifa Begum

This study reports on the unsteady two-dimensional numerical investigations of melting of a paraffin wax (phase change material, PCM) which melts over a temperature range of 8.7oC. The PCM is placed inside a circular concentric horizontal-finned annulus for the storage of thermal energy. The inner tube is fitted with three radially diverging longitudinal fins strategically placed near the bottom part of the annulus to accelerate the melting process there. The developed CFD code used in Tabassum et al., 2018 is extended to incorporate the presence of fins. The numerical results show that the average Nusselt number over the inner tube surface, the total melt fraction, the total stored energy all increased at every time instant in the finned annulus compared to the annulus without fins. This is due to the fact that in the finned annulus, the fins at the lower part of the annulus promotes buoyancy-driven convection as opposed to the slow conduction melting that prevails at the bottom part of the plain annulus. Fins with two different heights have been considered. It is found that by extending the height of the fin to 50% of the annular gap about 33.05% more energy could be stored compared to the bare annulus at the melting time of 82.37 min for the identical operating conditions. The effects of fins with different heights on the temperature and streamfunction distributions are found to be different. The present study can provide some useful guidelines for achieving a better thermal energy storage system.


2021 ◽  
Vol 13 (5) ◽  
pp. 2590
Author(s):  
S. A. M. Mehryan ◽  
Kaamran Raahemifar ◽  
Leila Sasani Gargari ◽  
Ahmad Hajjar ◽  
Mohamad El Kadri ◽  
...  

A Nano-Encapsulated Phase-Change Material (NEPCM) suspension is made of nanoparticles containing a Phase Change Material in their core and dispersed in a fluid. These particles can contribute to thermal energy storage and heat transfer by their latent heat of phase change as moving with the host fluid. Thus, such novel nanoliquids are promising for applications in waste heat recovery and thermal energy storage systems. In the present research, the mixed convection of NEPCM suspensions was addressed in a wavy wall cavity containing a rotating solid cylinder. As the nanoparticles move with the liquid, they undergo a phase change and transfer the latent heat. The phase change of nanoparticles was considered as temperature-dependent heat capacity. The governing equations of mass, momentum, and energy conservation were presented as partial differential equations. Then, the governing equations were converted to a non-dimensional form to generalize the solution, and solved by the finite element method. The influence of control parameters such as volume concentration of nanoparticles, fusion temperature of nanoparticles, Stefan number, wall undulations number, and as well as the cylinder size, angular rotation, and thermal conductivities was addressed on the heat transfer in the enclosure. The wall undulation number induces a remarkable change in the Nusselt number. There are optimum fusion temperatures for nanoparticles, which could maximize the heat transfer rate. The increase of the latent heat of nanoparticles (a decline of Stefan number) boosts the heat transfer advantage of employing the phase change particles.


Sign in / Sign up

Export Citation Format

Share Document