scholarly journals Edge-partitioning graphs into regular and locally irregular components

2016 ◽  
Vol Vol. 17 no. 3 (Graph Theory) ◽  
Author(s):  
Julien Bensmail ◽  
Brett Stevens

International audience A graph is locally irregular if every two adjacent vertices have distinct degrees. Recently, Baudon et al. introduced the notion of decomposition into locally irregular subgraphs. They conjectured that for almost every graph $G$, there exists a minimum integer $\chi^{\prime}_{\mathrm{irr}}(G)$ such that $G$ admits an edge-partition into $\chi^{\prime}_{\mathrm{irr}}(G)$ classes, each of which induces a locally irregular graph. In particular, they conjectured that $\chi^{\prime}_{\mathrm{irr}}(G) \leq 3$ for every $G$, unless $G$ belongs to a well-characterized family of non-decomposable graphs. This conjecture is far from being settled, as notably (1) no constant upper bound on$\chi^{\prime}_{\mathrm{irr}}(G)$ is known for $G$ bipartite, and (2) no satisfactory general upper bound on $\chi^{\prime}_{\mathrm{irr}}(G)$ is known. We herein investigate the consequences on this question of allowing a decomposition to include regular components as well. As a main result, we prove that every bipartite graph admits such a decomposition into at most $6$ subgraphs. This result implies that every graph $G$ admits a decomposition into at most $6(\lfloor \mathrm{log} \chi (G) \rfloor +1)$ subgraphs whose components are regular or locally irregular.

2009 ◽  
Vol Vol. 11 no. 2 (Graph and Algorithms) ◽  
Author(s):  
Lech Adamus

Graphs and Algorithms International audience The following problem was solved by Woodall in 1972: for any pair of nonnegative integers n and k < n/2 - 1 find the minimum integer g(n, k) such that every graph with n vertices and at least g(n, k) edges contains a cycle of length n - k. Woodall proved even more: the size g(n, k), in fact, guarantees the existence of cycles C, for all 3 <= p <= n - k. <br> <br> In the paper an analogous problem for bipartite graphs is considered. It is proved that every bipartite graph with color classes of cardinalities m and n, m <= n, and size greater than n(m - k - 1) + k + 1 contains a cycle of length 2m - 2k, where m >= 1/2k(2) + 3/2k + 4, k is an element of N. The bound on the number of edges is best possible. Moreover, this size condition guarantees the existence of cycles of all even lengths up to 2m - 2k. We also characterize all extremal graphs for this problem. Finally, we conjecture that the condition on the order may be relaxed to m >= 2k + 2.


2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Thomas Fernique ◽  
Damien Regnault

International audience This paper introduces a Markov process inspired by the problem of quasicrystal growth. It acts over dimer tilings of the triangular grid by randomly performing local transformations, called $\textit{flips}$, which do not increase the number of identical adjacent tiles (this number can be thought as the tiling energy). Fixed-points of such a process play the role of quasicrystals. We are here interested in the worst-case expected number of flips to converge towards a fixed-point. Numerical experiments suggest a $\Theta (n^2)$ bound, where $n$ is the number of tiles of the tiling. We prove a $O(n^{2.5})$ upper bound and discuss the gap between this bound and the previous one. We also briefly discuss the average-case.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


2010 ◽  
Vol Vol. 12 no. 1 ◽  
Author(s):  
Therese Biedl ◽  
Michal Stern

International audience Edge-intersection graphs of paths in grids are graphs that can be represented such that vertices are paths in a grid and edges between vertices of the graph exist whenever two grid paths share a grid edge. This type of graphs is motivated by applications in conflict resolution of paths in grid networks. In this paper, we continue the study of edge-intersection graphs of paths in a grid, which was initiated by Golumbic, Lipshteyn and Stern. We show that for any k, if the number of bends in each path is restricted to be at most k, then not all graphs can be represented. Then we study some graph classes that can be represented with k-bend paths, for small k. We show that every planar graph has a representation with 5-bend paths, every outerplanar graph has a representation with 3-bend paths, and every planar bipartite graph has a representation with 2-bend paths. We also study line graphs, graphs of bounded pathwidth, and graphs with -regular edge orientations.


2008 ◽  
Vol Vol. 10 no. 3 ◽  
Author(s):  
Cyril Gavoille ◽  
Nicolas Hanusse

International audience In this paper we show an information-theoretic lower bound of kn - o(kn) on the minimum number of bits to represent an unlabeled simple connected n-node graph of pagenumber k. This has to be compared with the efficient encoding scheme of Munro and Raman of 2kn + 2m + o(kn+m) bits (m the number of edges), that is 4kn + 2n + o(kn) bits in the worst-case. For m-edge graphs of pagenumber k (with multi-edges and loops), we propose a 2mlog2k + O(m) bits encoding improving the best previous upper bound of Munro and Raman whenever m ≤ 1 / 2kn/log2 k. Actually our scheme applies to k-page embedding containing multi-edge and loops. Moreover, with an auxiliary table of o(m log k) bits, our coding supports (1) the computation of the degree of a node in constant time, (2) adjacency queries with O(logk) queries of type rank, select and match, that is in O(logk *minlogk / loglogm, loglogk) time and (3) the access to δ neighbors in O(δ) runs of select, rank or match;.


2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Antoine Genitrini ◽  
Jakub Kozik ◽  
Grzegorz Matecki

International audience Within the language of propositional formulae built on implication and a finite number of variables $k$, we analyze the set of formulae which are classical tautologies but not intuitionistic (we call such formulae - Peirce's formulae). We construct the large family of so called simple Peirce's formulae, whose sequence of densities for different $k$ is asymptotically equivalent to the sequence $\frac{1}{ 2 k^2}$. We prove that the densities of the sets of remaining Peirce's formulae are asymptotically bounded from above by $\frac{c}{ k^3}$ for some constant $c \in \mathbb{R}$. The result justifies the statement that in the considered language almost all Peirce's formulae are simple. The result gives a partial answer to the question stated in the recent paper by H. Fournier, D. Gardy, A. Genitrini and M. Zaionc - although we have not proved the existence of the densities for Peirce's formulae, our result gives lower and upper bound for it (if it exists) and both bounds are asymptotically equivalent to $\frac{1}{ 2 k^2}$.


1989 ◽  
Vol Volume 12 ◽  
Author(s):  
Sukumar Das Adhikari ◽  
R Balasubramanian ◽  
A Sankaranarayanan

International audience Let $r_4(n)$ be the number of ways of writing $n$ as the sum of four squares. Set $P_4(x)= \sum \limits_{n\le x} r_4(n)-\frac {1}{2}\pi^2 x^2$, the error term for the average order of this arithmetical function. In this paper, following the ideas of Erd\"os and Shapiro, a new elementary method is developed which yields the slightly stronger result $P_4(x)= \Omega_{+}(x \log \log x)$. We also apply our method to give an upper bound for a quantity involving the Euler $\varphi$-function. This second result gives an elementary proof of a theorem of H. L. Montgomery


10.37236/212 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
László Babai ◽  
Barry Guiduli

Let $G$ be a graph on $n$ vertices with spectral radius $\lambda$ (this is the largest eigenvalue of the adjacency matrix of $G$). We show that if $G$ does not contain the complete bipartite graph $K_{t ,s}$ as a subgraph, where $2\le t \le s$, then $$\lambda \le \Big((s-1)^{1/t }+o(1)\Big)n^{1-1/t }$$ for fixed $t$ and $s$ while $n\to\infty$. Asymptotically, this bound matches the Kővári-Turán-Sós upper bound on the average degree of $G$ (the Zarankiewicz problem).


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Tomasz Bartnicki ◽  
Jaroslaw Grytczuk ◽  
Hal Kierstead

International audience Using a fixed set of colors $C$, Ann and Ben color the edges of a graph $G$ so that no monochromatic cycle may appear. Ann wins if all edges of $G$ have been colored, while Ben wins if completing a coloring is not possible. The minimum size of $C$ for which Ann has a winning strategy is called the $\textit{game arboricity}$ of $G$, denoted by $A_g(G)$. We prove that $A_g(G) \leq 3k$ for any graph $G$ of arboricity $k$, and that there are graphs such that $A_g(G) \geq 2k-2$. The upper bound is achieved by a suitable version of the activation strategy, used earlier for the vertex coloring game. We also provide other strategie based on induction.


Sign in / Sign up

Export Citation Format

Share Document