scholarly journals The game of arboricity

2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Tomasz Bartnicki ◽  
Jaroslaw Grytczuk ◽  
Hal Kierstead

International audience Using a fixed set of colors $C$, Ann and Ben color the edges of a graph $G$ so that no monochromatic cycle may appear. Ann wins if all edges of $G$ have been colored, while Ben wins if completing a coloring is not possible. The minimum size of $C$ for which Ann has a winning strategy is called the $\textit{game arboricity}$ of $G$, denoted by $A_g(G)$. We prove that $A_g(G) \leq 3k$ for any graph $G$ of arboricity $k$, and that there are graphs such that $A_g(G) \geq 2k-2$. The upper bound is achieved by a suitable version of the activation strategy, used earlier for the vertex coloring game. We also provide other strategie based on induction.

2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Mikko Pelto

Graph Theory International audience Let G=(V,E) be a simple undirected graph. We call any subset C⊆V an identifying code if the sets I(v)={c∈C | {v,c}∈E or v=c } are distinct and non-empty for all vertices v∈V. A graph is called twin-free if there is an identifying code in the graph. The identifying code with minimum size in a twin-free graph G is called the optimal identifying code and the size of such a code is denoted by γ(G). Let GS denote the induced subgraph of G where the vertex set S⊂V is deleted. We provide a tight upper bound for γ(GS)-γ(G) when both graphs are twin-free and |V| is large enough with respect to |S|. Moreover, we prove tight upper bound when G is a bipartite graph and |S|=1.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Jun Tarui

International audience A family $\mathcal{P} = \{\pi_1, \ldots , \pi_q\}$ of permutations of $[n]=\{1,\ldots,n\}$ is $\textit{completely}$ $k$-$\textit{scrambling}$ [Spencer, 1972; Füredi, 1996] if for any distinct $k$ points $x_1,\ldots,x_k \in [n]$, permutations $\pi_i$'s in $\mathcal{P}$ produce all $k!$ possible orders on $\pi_i (x_1),\ldots, \pi_i(x_k)$. Let $N^{\ast}(n,k)$ be the minimum size of such a family. This paper focuses on the case $k=3$. By a simple explicit construction, we show the following upper bound, which we express together with the lower bound due to Füredi for comparison. $\frac{2}{ \log _2e} \log_2 n \leq N^{\ast}(n,3) \leq 2\log_2n + (1+o(1)) \log_2 \log _2n$. We also prove the existence of $\lim_{n \to \infty} N^{\ast}(n,3) / \log_2 n = c_3$. Determining the value $c_3$ and proving the existence of $\lim_{n \to \infty} N^{\ast}(n,k) / \log_2 n = c_k$ for $k \geq 4$ remain open.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950004
Author(s):  
Michael A. Henning ◽  
Nader Jafari Rad

A subset [Formula: see text] of vertices in a hypergraph [Formula: see text] is a transversal if [Formula: see text] has a nonempty intersection with every edge of [Formula: see text]. The transversal number of [Formula: see text] is the minimum size of a transversal in [Formula: see text]. A subset [Formula: see text] of vertices in a graph [Formula: see text] with no isolated vertex, is a total dominating set if every vertex of [Formula: see text] is adjacent to a vertex of [Formula: see text]. The minimum cardinality of a total dominating set in [Formula: see text] is the total domination number of [Formula: see text]. In this paper, we obtain a new (improved) probabilistic upper bound for the transversal number of a hypergraph, and a new (improved) probabilistic upper bound for the total domination number of a graph.


2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Thomas Fernique ◽  
Damien Regnault

International audience This paper introduces a Markov process inspired by the problem of quasicrystal growth. It acts over dimer tilings of the triangular grid by randomly performing local transformations, called $\textit{flips}$, which do not increase the number of identical adjacent tiles (this number can be thought as the tiling energy). Fixed-points of such a process play the role of quasicrystals. We are here interested in the worst-case expected number of flips to converge towards a fixed-point. Numerical experiments suggest a $\Theta (n^2)$ bound, where $n$ is the number of tiles of the tiling. We prove a $O(n^{2.5})$ upper bound and discuss the gap between this bound and the previous one. We also briefly discuss the average-case.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


10.37236/4881 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Béla Bajnok ◽  
Ryan Matzke

For a finite abelian group $G$ and positive integers $m$ and $h$, we let $$\rho(G, m, h) = \min \{ |hA| \; : \; A \subseteq G, |A|=m\}$$ and$$\rho_{\pm} (G, m, h) = \min \{ |h_{\pm} A| \; : \; A \subseteq G, |A|=m\},$$ where $hA$ and $h_{\pm} A$ denote the $h$-fold sumset and the $h$-fold signed sumset of $A$, respectively. The study of $\rho(G, m, h)$ has a 200-year-old history and is now known for all $G$, $m$, and $h$. Here we prove that $\rho_{\pm}(G, m, h)$ equals $\rho (G, m, h)$ when $G$ is cyclic, and establish an upper bound for $\rho_{\pm} (G, m, h)$ that we believe gives the exact value for all $G$, $m$, and $h$.


10.37236/5252 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Andrzej Ruciński ◽  
Andrzej Żak

For $1\leqslant \ell< k$,  an $\ell$-overlapping $k$-cycle is a $k$-uniform hypergraph in which, for some cyclic vertex ordering, every edge consists of $k$ consecutive vertices and every two consecutive edges share exactly $\ell$ vertices.A $k$-uniform hypergraph $H$ is $\ell$-Hamiltonian saturated if $H$ does not contain an $\ell$-overlapping Hamiltonian $k$-cycle but every hypergraph obtained from $H$ by adding one edge does contain such a cycle. Let $\mathrm{sat}(n,k,\ell)$ be the smallest number of edges in an $\ell$-Hamiltonian saturated $k$-uniform hypergraph on $n$ vertices. In the case of graphs Clark and Entringer showed in 1983 that $\mathrm{sat}(n,2,1)=\lceil \tfrac{3n}2\rceil$. The present authors proved that for $k\geqslant 3$ and $\ell=1$, as well as for all $0.8k\leqslant \ell\leq k-1$, $\mathrm{sat}(n,k,\ell)=\Theta(n^{\ell})$. In this paper we prove two upper bounds which cover the remaining range of $\ell$. The first, quite technical one, restricted to $\ell\geqslant\frac{k+1}2$, implies in particular that for $\ell=\tfrac23k$ and $\ell=\tfrac34k$ we have $\mathrm{sat}(n,k,\ell)=O(n^{\ell+1})$. Our main result provides an upper bound $\mathrm{sat}(n,k,\ell)=O(n^{\frac{k+\ell}2})$ valid for all $k$ and $\ell$. In the smallest open case we improve it further to $\mathrm{sat}(n,4,2)=O(n^{\frac{14}5})$.


2008 ◽  
Vol Vol. 10 no. 3 ◽  
Author(s):  
Cyril Gavoille ◽  
Nicolas Hanusse

International audience In this paper we show an information-theoretic lower bound of kn - o(kn) on the minimum number of bits to represent an unlabeled simple connected n-node graph of pagenumber k. This has to be compared with the efficient encoding scheme of Munro and Raman of 2kn + 2m + o(kn+m) bits (m the number of edges), that is 4kn + 2n + o(kn) bits in the worst-case. For m-edge graphs of pagenumber k (with multi-edges and loops), we propose a 2mlog2k + O(m) bits encoding improving the best previous upper bound of Munro and Raman whenever m ≤ 1 / 2kn/log2 k. Actually our scheme applies to k-page embedding containing multi-edge and loops. Moreover, with an auxiliary table of o(m log k) bits, our coding supports (1) the computation of the degree of a node in constant time, (2) adjacency queries with O(logk) queries of type rank, select and match, that is in O(logk *minlogk / loglogm, loglogk) time and (3) the access to δ neighbors in O(δ) runs of select, rank or match;.


2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Antoine Genitrini ◽  
Jakub Kozik ◽  
Grzegorz Matecki

International audience Within the language of propositional formulae built on implication and a finite number of variables $k$, we analyze the set of formulae which are classical tautologies but not intuitionistic (we call such formulae - Peirce's formulae). We construct the large family of so called simple Peirce's formulae, whose sequence of densities for different $k$ is asymptotically equivalent to the sequence $\frac{1}{ 2 k^2}$. We prove that the densities of the sets of remaining Peirce's formulae are asymptotically bounded from above by $\frac{c}{ k^3}$ for some constant $c \in \mathbb{R}$. The result justifies the statement that in the considered language almost all Peirce's formulae are simple. The result gives a partial answer to the question stated in the recent paper by H. Fournier, D. Gardy, A. Genitrini and M. Zaionc - although we have not proved the existence of the densities for Peirce's formulae, our result gives lower and upper bound for it (if it exists) and both bounds are asymptotically equivalent to $\frac{1}{ 2 k^2}$.


1989 ◽  
Vol Volume 12 ◽  
Author(s):  
Sukumar Das Adhikari ◽  
R Balasubramanian ◽  
A Sankaranarayanan

International audience Let $r_4(n)$ be the number of ways of writing $n$ as the sum of four squares. Set $P_4(x)= \sum \limits_{n\le x} r_4(n)-\frac {1}{2}\pi^2 x^2$, the error term for the average order of this arithmetical function. In this paper, following the ideas of Erd\"os and Shapiro, a new elementary method is developed which yields the slightly stronger result $P_4(x)= \Omega_{+}(x \log \log x)$. We also apply our method to give an upper bound for a quantity involving the Euler $\varphi$-function. This second result gives an elementary proof of a theorem of H. L. Montgomery


Sign in / Sign up

Export Citation Format

Share Document