scholarly journals Long Cycle Factorizations: Bijective Computation in the General Case

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Ekaterina A. Vassilieva

International audience This paper is devoted to the computation of the number of ordered factorizations of a long cycle in the symmetric group where the number of factors is arbitrary and the cycle structure of the factors is given. Jackson (1988) derived the first closed form expression for the generating series of these numbers using the theory of the irreducible characters of the symmetric group. Thanks to a direct bijection we compute a similar formula and provide the first purely combinatorial evaluation of these generating series. Cet article est dédié au calcul du nombre de factorisations d’un long cycle du groupe symétrique pour lesquels le nombre de facteurs est arbitraire et la structure des cycles des facteurs est donnée. Jackson (1988) a dérivé la première expression compacte pour les séries génératrices de ces nombres en utilisant la théorie des caractères irréductibles du groupe symétrique. Grâce à une bijection directe nous démontrons une formule similaire et donnons ainsi la première évaluation purement combinatoire de ces séries génératrices.

10.37236/3226 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Alejandro H. Morales ◽  
Ekaterina A. Vassilieva

We evaluate combinatorially certain connection coefficients of the symmetric group that count the number of factorizations of a long cycle as a product of three permutations. Such factorizations admit an important topological interpretation in terms of unicellular constellations on orientable surfaces. Algebraic computation of these coefficients was first done by Jackson using irreducible characters of the symmetric group. However, bijective computations of these coefficients are so far limited to very special cases. Thanks to a new bijection that refines the work of Schaeffer and Vassilieva, we give an explicit closed form evaluation of the generating series for these coefficients. The main ingredient in the bijection is a modified oriented tricolored tree tractable to enumerate. Finally, reducing this bijection to factorizations of a long cycle into two permutations, we get the analogue formula for the corresponding generating series.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Philippe Biane ◽  
Matthieu Josuat-Vergès

International audience It is known that the number of minimal factorizations of the long cycle in the symmetric group into a product of k cycles of given lengths has a very simple formula: it is nk−1 where n is the rank of the underlying symmetric group and k is the number of factors. In particular, this is nn−2 for transposition factorizations. The goal of this work is to prove a multivariate generalization of this result. As a byproduct, we get a multivariate analog of Postnikov's hook length formula for trees, and a refined enumeration of final chains of noncrossing partitions.


1992 ◽  
Vol 1 (2) ◽  
pp. 135-155 ◽  
Author(s):  
Persi Diaconis ◽  
James Allen Fill ◽  
Jim Pitman

A deck of n cards is shuffled by repeatedly taking off the top m cards and inserting them in random positions. We give a closed form expression for the distribution after any number of steps. This is used to give the asymptotics of the approach to stationarity: for m fixed and n large, it takes shuffles to get close to random. The formulae lead to new subalgebras in the group algebra of the symmetric group.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yassine Zouaoui ◽  
Larbi Talbi ◽  
Khelifa Hettak ◽  
Naresh K. Darimireddy

2021 ◽  
Vol 48 (3) ◽  
pp. 91-96
Author(s):  
Shigeo Shioda

The consensus achieved in the consensus-forming algorithm is not generally a constant but rather a random variable, even if the initial opinions are the same. In the present paper, we investigate the statistical properties of the consensus in a broadcasting-based consensus-forming algorithm. We focus on two extreme cases: consensus forming by two agents and consensus forming by an infinite number of agents. In the two-agent case, we derive several properties of the distribution function of the consensus. In the infinite-numberof- agents case, we show that if the initial opinions follow a stable distribution, then the consensus also follows a stable distribution. In addition, we derive a closed-form expression of the probability density function of the consensus when the initial opinions follow a Gaussian distribution, a Cauchy distribution, or a L´evy distribution.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Vivek Kumar Singh ◽  
Rama Mishra ◽  
P. Ramadevi

Abstract Weaving knots W(p, n) of type (p, n) denote an infinite family of hyperbolic knots which have not been addressed by the knot theorists as yet. Unlike the well known (p, n) torus knots, we do not have a closed-form expression for HOMFLY-PT and the colored HOMFLY-PT for W(p, n). In this paper, we confine to a hybrid generalization of W(3, n) which we denote as $$ {\hat{W}}_3 $$ W ̂ 3 (m, n) and obtain closed form expression for HOMFLY-PT using the Reshitikhin and Turaev method involving $$ \mathrm{\mathcal{R}} $$ ℛ -matrices. Further, we also compute [r]-colored HOMFLY-PT for W(3, n). Surprisingly, we observe that trace of the product of two dimensional $$ \hat{\mathrm{\mathcal{R}}} $$ ℛ ̂ -matrices can be written in terms of infinite family of Laurent polynomials $$ {\mathcal{V}}_{n,t}\left[q\right] $$ V n , t q whose absolute coefficients has interesting relation to the Fibonacci numbers $$ {\mathrm{\mathcal{F}}}_n $$ ℱ n . We also computed reformulated invariants and the BPS integers in the context of topological strings. From our analysis, we propose that certain refined BPS integers for weaving knot W(3, n) can be explicitly derived from the coefficients of Chebyshev polynomials of first kind.


Author(s):  
M.J. Cañavate-Sánchez ◽  
A. Segneri ◽  
S. Godi ◽  
A. Georgiadis ◽  
S. Kosmopoulos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document