scholarly journals Weakly prudent self-avoiding bridges

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Axel Bacher ◽  
Nicholas Beaton

International audience We define and enumerate a new class of self-avoiding walks on the square lattice, which we call <i>weakly prudent bridges</i>. Their definition is inspired by two previously-considered classes of self-avoiding walks, and can be viewed as a combination of those two models. We consider several methods for recursively generating these objects, each with its own advantages and disadvantages, and use these methods to solve the generating function, obtain very long series, and randomly generate walks of arbitrary size. We find that the growth constant of these walks is approximately 2.58, which is larger than that of any previously-solved class of self-avoiding walks.

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Axel Bacher ◽  
Mireille Bousquet-Mélou

International audience We define a new family of self-avoiding walks (SAW) on the square lattice, called $\textit{weakly directed walks}$. These walks have a simple characterization in terms of the irreducible bridges that compose them. We determine their generating function. This series has a complex singularity structure and in particular, is not D-finite. The growth constant is approximately 2.54 and is thus larger than that of all natural families of SAW enumerated so far (but smaller than that of general SAW, which is about 2.64). We also prove that the end-to-end distance of weakly directed walks grows linearly. Finally, we study a diagonal variant of this model. Nous définissons une nouvelle famille de chemins auto-évitants (CAE) sur le réseau carré, appelés $\textit{chemins faiblement dirigés}$. Ces chemins ont une caractérisation simple en termes des ponts irréductibles qui les composent. Nous déterminons leur série génératrice. Cette série a une structure de singularité complexe et n'est en particulier pas D-finie. La constante de croissance est environ 2,54, ce qui est supérieur à toutes les familles naturelles de SAW étudiées jusqu'à présent, mais inférieur aux CAE généraux (dont la constante est environ 2,64). Nous prouvons également que la distance moyenne entre les extrémités du chemin croît linéairement. Enfin, nous étudions une variante diagonale du modèle.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Mireille Bousquet-Mélou

International audience A self-avoiding walk on the square lattice is $\textit{prudent}$, if it never takes a step towards a vertex it has already visited. Préa was the first to address the enumeration of these walks, in 1997. For 4 natural classes of prudent walks, he wrote a system of recurrence relations, involving the length of the walks and some additional "catalytic'' parameters. The generating function of the first class is easily seen to be rational. The second class was proved to have an algebraic (quadratic) generating function by Duchi (FPSAC'05). Here, we solve exactly the third class, which turns out to be much more complex: its generating function is not algebraic, nor even $D$-finite. The fourth class ―- general prudent walks ―- still defeats us. However, we design an isotropic family of prudent walks on the triangular lattice, which we count exactly. Again, the generating function is proved to be non-$D$-finite. We also study the end-to-end distance of these walks and provide random generation procedures. Un chemin auto-évitant sur le réseau carré est $\textit{prudent}$, s'il ne fait jamais un pas en direction d'un point qu'il a déjà visité. Préa est le premier à avoir cherché à énumérer ces chemins, en 1997. Pour 4 classes naturelles de chemins prudents, il donne un système de relations de récurrence, impliquant la longueur des chemins et plusieurs paramètres "catalytiques'' supplémentaires. La première classe a une série génératrice simple, rationnelle. La deuxième a une série algébrique (quadratique) (Duchi, FPSAC'05). Nous comptons ici les chemins de la troisième classe, et observons un saut de complexité: la série obtenue n'est ni algébrique, ni même différentiellement finie. La quatrième classe, celle des chemins prudents généraux, résiste encore. Cependant, nous définissons un modèle isotrope de chemins prudents sur réseau triangulaire, que nous résolvons de nouveau, la série obtenue n'est pas différentiellement finie. Nous étudions aussi la vitesse d'éloignement de ces chemins, et proposons des algorithmes de génération aléatoire.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Michael Albert ◽  
Mireille Bousquet-Mélou

International audience At the end of the 1960s, Knuth characterised in terms of forbidden patterns the permutations that can be sorted using a stack. He also showed that they are in bijection with Dyck paths and thus counted by the Catalan numbers. Subsequently, Pratt and Tarjan asked about permutations that can be sorted using two stacks in parallel. This question is significantly harder, and the associated counting question has remained open for 40 years. We solve it by giving a pair of equations that characterise the generating function of such permutations. The first component of this system describes the generating function $Q(a,u)$ of square lattice loops confined to the positive quadrant, counted by the length and the number of North-West and East-South factors. Our analysis of the asymptotic number of sortable permutations relies at the moment on two intriguing conjectures dealing with this series. Given the recent activity on walks confined to cones, we believe them to be attractive $\textit{per se}$. We prove these conjectures for closed walks confined to the upper half plane, or not confined at all. Nous énumérons les permutations triables par deux piles en parallèle. Cette question était restée ouverte depuis les travaux de Knuth, Pratt et Tarjan dans les années 70. Notre solution consiste en une paire d’équations qui caractérisent la série génératrice. La première composante de ce système décrit la série $Q(a,u)$ des chemins fermés confinés dans le quart de plan positif, comptés selon leur longueur et le nombre de facteurs Nord-Ouest ou Est-Sud. Notre analyse du comportement asymptotique du nombre de permutations triables repose à ce stade sur deux conjectures remarquables portant sur $Q(a; u)$. Nous les prouvons pour les chemins fermés non confinés, ou confinés au demi-plan supérieur.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Mireille Bousquet-Mélou ◽  
Anders Claesson ◽  
Mark Dukes ◽  
Sergey Kitaev

International audience We present statistic-preserving bijections between four classes of combinatorial objects. Two of them, the class of unlabeled $(\textrm{2+2})$-free posets and a certain class of chord diagrams (or involutions), already appeared in the literature, but were apparently not known to be equinumerous. The third one is a new class of pattern avoiding permutations, and the fourth one consists of certain integer sequences called $\textit{ascent sequences}$. We also determine the generating function of these classes of objects, thus recovering a non-D-finite series obtained by Zagier for chord diagrams. Finally, we characterize the ascent sequences that correspond to permutations avoiding the barred pattern $3\bar{1}52\bar{4}$, and enumerate those permutations, thus settling a conjecture of Pudwell. Nous présentons des bijections, transportant de nombreuses statistiques, entre quatre classes d'objets. Deux d'entre elles, la classe des EPO (ensembles partiellement ordonnés) sans motif $(\textrm{2+2})$ et une certaine classe d'involutions, sont déjà apparues dans la littérature. La troisième est une classe de permutations à motifs exclus, et la quatrième une classe de suites que nous appelons $\textit{suites à montées}$. Nous déterminons ensuite la série génératrice de ces classes, retrouvant ainsi un résultat prouvé par Zagier pour les involutions sus-mentionnées. La série obtenue n'est pas D-finie. Apparemment, le fait qu'elle compte aussi les EPO sans motif $(\textrm{2+2})$ est nouveau. Finalement, nous caractérisons les suites à montées qui correspondent aux permutations évitant le motif barré $3\bar{1}52\bar{4}$ et énumérons ces permutations, ce qui démontre une conjecture de Pudwell.


2016 ◽  
Vol 49 (49) ◽  
pp. 494004 ◽  
Author(s):  
Jesper Lykke Jacobsen ◽  
Christian R Scullard ◽  
Anthony J Guttmann

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 648
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran ◽  
Deena Al-Kadi

The purpose of this paper is to construct a unified generating function involving the families of the higher-order hypergeometric Bernoulli polynomials and Lagrange–Hermite polynomials. Using the generating function and their functional equations, we investigate some properties of these polynomials. Moreover, we derive several connected formulas and relations including the Miller–Lee polynomials, the Laguerre polynomials, and the Lagrange Hermite–Miller–Lee polynomials.


2018 ◽  
Vol 99 (03) ◽  
pp. 353-361
Author(s):  
MEGHA GOYAL

We give the generating function of split$(n+t)$-colour partitions and obtain an analogue of Euler’s identity for split$n$-colour partitions. We derive a combinatorial relation between the number of restricted split$n$-colour partitions and the function$\unicode[STIX]{x1D70E}_{k}(\unicode[STIX]{x1D707})=\sum _{d|\unicode[STIX]{x1D707}}d^{k}$. We introduce a new class of split perfect partitions with$d(a)$copies of each part$a$and extend the work of Agarwal and Subbarao [‘Some properties of perfect partitions’,Indian J. Pure Appl. Math 22(9) (1991), 737–743].


2018 ◽  
Vol 52 (2) ◽  
pp. 025004 ◽  
Author(s):  
F Gassoumov ◽  
E J Janse van Rensburg

2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Mark Wilson

Combinatorics International audience A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession, we will mean a pair of adjacent parts x and y within a composition such that x=y(modm). Here, we consider the problem of counting the compositions of size n according to the number of m-congruence successions, extending recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention is paid to the case m=2, where further enumerative results may be obtained by means of combinatorial arguments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence successions.


2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Frédérique Bassino ◽  
Julien Clément ◽  
J. Fayolle ◽  
P. Nicodème

International audience In this paper, we give the multivariate generating function counting texts according to their length and to the number of occurrences of words from a finite set. The application of the inclusion-exclusion principle to word counting due to Goulden and Jackson (1979, 1983) is used to derive the result. Unlike some other techniques which suppose that the set of words is reduced (<i>i..e.</i>, where no two words are factor of one another), the finite set can be chosen arbitrarily. Noonan and Zeilberger (1999) already provided a MAPLE package treating the non-reduced case, without giving an expression of the generating function or a detailed proof. We give a complete proof validating the use of the inclusion-exclusion principle and compare the complexity of the method proposed here with the one using automata for solving the problem.


Sign in / Sign up

Export Citation Format

Share Document