scholarly journals Infinite limits and folding

2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Anthony Bonato ◽  
Jeannette Janssen

International audience We study infinite limits of graphs generated by the duplication model for biological networks. We prove that with probability 1, the sole nontrivial connected component of the limits is unique up to isomorphism. We describe certain infinite deterministic graphs which arise naturally from the model. We characterize the isomorphism type and induced subgraph structure of these infinite graphs using the notion of dismantlability from the theory of vertex pursuit games, and graph homomorphisms.

1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Andrzej Proskurowski ◽  
Jan Arne Telle

International audience We introduce q-proper interval graphs as interval graphs with interval models in which no interval is properly contained in more than q other intervals, and also provide a forbidden induced subgraph characterization of this class of graphs. We initiate a graph-theoretic study of subgraphs of q-proper interval graphs with maximum clique size k+1 and give an equivalent characterization of these graphs by restricted path-decomposition. By allowing the parameter q to vary from 0 to k, we obtain a nested hierarchy of graph families, from graphs of bandwidth at most k to graphs of pathwidth at most k. Allowing both parameters to vary, we have an infinite lattice of graph classes ordered by containment.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Anna Lladó

International audience A graph $G=(V,E)$ is said to be $\textit{magic}$ if there exists an integer labeling $f: V \cup E \to [1, |V \cup E|]$ such that $f(x)+f(y)+f(xy)$ is constant for all edges $xy \in E$. Enomoto, Masuda and Nakamigawa proved that there are magic graphs of order at most $3n^2+o(n^2)$ which contain a complete graph of order $n$. Bounds on Sidon sets show that the order of such a graph is at least $n^2+o(n^2)$. We close the gap between those two bounds by showing that, for any given graph $H$ of order $n$, there are connected magic graphs of order $n^2+o(n^2)$ containing $H$ as an induced subgraph. Moreover it can be required that the graph admits a supermagic labelling $f$, which satisfies the additional condition $f(V)=[1,|V|]$.


2011 ◽  
Vol Vol. 13 no. 2 (Graph and Algorithms) ◽  
Author(s):  
Eva Jelinkova ◽  
Ondrej Suchy ◽  
Petr Hlineny ◽  
Jan Kratochvil

Graphs and Algorithms International audience Seidel's switching is a graph operation which makes a given vertex adjacent to precisely those vertices to which it was non-adjacent before, while keeping the rest of the graph unchanged. Two graphs are called switching-equivalent if one can be made isomorphic to the other by a sequence of switches. In this paper, we continue the study of computational complexity aspects of Seidel's switching, concentrating on Fixed Parameter Complexity. Among other results we show that switching to a graph with at most k edges, to a graph of maximum degree at most k, to a k-regular graph, or to a graph with minimum degree at least k are fixed parameter tractable problems, where k is the parameter. On the other hand, switching to a graph that contains a given fixed graph as an induced subgraph is W [1]-complete. We also show the NP-completeness of switching to a graph with a clique of linear size, and of switching to a graph with small number of edges. A consequence of the latter result is the NP-completeness of Maximum Likelihood Decoding of graph theoretic codes based on complete graphs.


2009 ◽  
Vol Vol. 11 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Petr Gregor ◽  
Riste Škrekovski

Graphs and Algorithms International audience In this paper, we study long cycles in induced subgraphs of hypercubes obtained by removing a given set of faulty vertices such that every two faults are distant. First, we show that every induced subgraph of Q(n) with minimum degree n - 1 contains a cycle of length at least 2(n) - 2(f) where f is the number of removed vertices. This length is the best possible when all removed vertices are from the same bipartite class of Q(n). Next, we prove that every induced subgraph of Q(n) obtained by removing vertices of some given set M of edges of Q(n) contains a Hamiltonian cycle if every two edges of M are at distance at least 3. The last result shows that the shell of every linear code with odd minimum distance at least 3 contains a Hamiltonian cycle. In all these results we obtain significantly more tolerable faulty vertices than in the previously known results. We also conjecture that every induced subgraph of Q(n) obtained by removing a balanced set of vertices with minimum distance at least 3 contains a Hamiltonian cycle.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Alessandro Vezzani ◽  
Davide Cassi ◽  
Raffaella Burioni

International audience The study of thermodynamic properties of classical spin models on infinite graphs naturally leads to consider the new combinatorial problems of random-walks and percolation on the average. Indeed, spinmodels with O(n) continuous symmetry present spontaneous magnetization only on transient on the average graphs, while models with discrete symmetry (Ising and Potts) are spontaneously magnetized on graphs exhibiting percolation on the average. In this paper we define the combinatorial problems on the average, showing that they give rise to classifications of graph topology which are different from the ones obtained in usual (local) random-walks and percolation. Furthermore, we illustrate the theorem proving the correspondence between Potts model and average percolation.


2013 ◽  
Vol Vol. 15 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Martiniano Eguia ◽  
Francisco Juan Soulignac

Graphs and Algorithms International audience A biclique is a set of vertices that induce a complete bipartite graph. A graph G is biclique-Helly when its family of maximal bicliques satisfies the Helly property. If every induced subgraph of G is also biclique-Helly, then G is hereditary biclique-Helly. A graph is C4-dominated when every cycle of length 4 contains a vertex that is dominated by the vertex of the cycle that is not adjacent to it. In this paper we show that the class of hereditary biclique-Helly graphs is formed precisely by those C4-dominated graphs that contain no triangles and no induced cycles of length either 5 or 6. Using this characterization, we develop an algorithm for recognizing hereditary biclique-Helly graphs in O(n2+αm) time and O(n+m) space. (Here n, m, and α= O(m1/2) are the number of vertices and edges, and the arboricity of the graph, respectively.) As a subprocedure, we show how to recognize those C4-dominated graphs that contain no triangles in O(αm) time and O(n+m) space. Finally, we show how to enumerate all the maximal bicliques of a C4-dominated graph with no triangles in O(n2 + αm) time and O(αm) space.


2006 ◽  
Vol Vol. 8 ◽  
Author(s):  
Mustapha Kchikech ◽  
Olivier Togni

International audience A multicoloring of a weighted graph G is an assignment of sets of colors to the vertices of G so that two adjacent vertices receive two disjoint sets of colors. A multicoloring problem on G is to find a multicoloring of G. In particular, we are interested in a minimum multicoloring that uses the least total number of colors. The main focus of this work is to obtain upper bounds on the weighted chromatic number of some classes of graphs in terms of the weighted clique number. We first propose an 11/6-approximation algorithm for multicoloring any weighted planar graph. We then study the multicoloring problem on powers of square and triangular meshes. Among other results, we show that the infinite triangular mesh is an induced subgraph of the fourth power of the infinite square mesh and we present 2-approximation algorithms for multicoloring a power square mesh and the second power of a triangular mesh, 3-approximation algorithms for multicoloring powers of semi-toroidal meshes and of triangular meshes and 4-approximation algorithm for multicoloring the power of a toroidal mesh. We also give similar algorithms for the Cartesian product of powers of paths and of cycles.


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Rakib Iqbal ◽  
Muhammad Shoaib Sardar ◽  
Dalal Alrowaili ◽  
Sohail Zafar ◽  
Imran Siddique

For a connected simple graph G , a nonempty subset S of V G is a connected safe set if the induced subgraph G S is connected and the inequality S ≥ D satisfies for each connected component D of G∖S whenever an edge of G exists between S and D . A connected safe set of a connected graph G with minimum cardinality is called the minimum connected safe set and that minimum cardinality is called the connected safe numbers. We study connected safe sets with minimal cardinality of the ladder, sunlet, and wheel graphs.


2008 ◽  
Vol Vol. 10 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Marina Groshaus ◽  
Jayme Luiz Szwarcfiter

Graphs and Algorithms International audience In graph theory, the Helly property has been applied to families of sets, such as cliques, disks, bicliques, and neighbourhoods, leading to the classes of clique-Helly, disk-Helly, biclique-Helly, neighbourhood-Helly graphs, respectively. A natural question is to determine for which graphs the corresponding Helly property holds, for every induced subgraph. This leads to the corresponding classes of hereditary clique-Helly, hereditary disk-Helly, hereditary biclique-Helly and hereditary neighbourhood-Helly graphs. In this paper, we describe characterizations in terms of families of forbidden subgraphs, for the classes of hereditary biclique-Helly and hereditary neighbourhood-Helly graphs. We consider both open and closed neighbourhoods. The forbidden subgraphs are all of fixed size, implying polynomial time recognition for these classes.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michael Drmota

International audience In this paper we consider discrete random walks on infinite graphs that are generated by copying and shifting one finite (strongly connected) graph into one direction and connecting successive copies always in the same way. With help of generating functions it is shown that there are only three types for the asymptotic behaviour of the random walk. It either converges to the stationary distribution or it can be approximated in terms of a reflected Brownian motion or by a Brownian motion. In terms of Markov chains these cases correspond to positive recurrence, to null recurrence, and to non recurrence.


Sign in / Sign up

Export Citation Format

Share Document