scholarly journals Triangulations of $\Delta_{n-1} \times \Delta_{d-1}$ and Tropical Oriented Matroids

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Suho Oh ◽  
Hwanchul Yoo

International audience Develin and Sturmfels showed that regular triangulations of $\Delta_{n-1} \times \Delta_{d-1}$ can be thought of as tropical polytopes. Tropical oriented matroids were defined by Ardila and Develin, and were conjectured to be in bijection with all subdivisions of $\Delta_{n-1} \times \Delta_{d-1}$. In this paper, we show that any triangulation of $\Delta_{n-1} \times \Delta_{d-1}$ encodes a tropical oriented matroid. We also suggest a new class of combinatorial objects that may describe all subdivisions of a bigger class of polytopes. Develin et Sturmfels ont montré que les triangulations de $\Delta_{n-1} \times \Delta_{d-1}$ peuvent être considérées comme des polytopes tropicaux. Les matroïdes orientés tropicaux ont été définis par Ardila et Develin, et ils ont été conjecturés être en bijection avec les subdivisions de $\Delta_{n-1} \times \Delta_{d-1}$. Dans cet article, nous montrons que toute triangulation de $\Delta_{n-1} \times \Delta_{d-1}$ encode un matroïde orienté tropical. De plus, nous proposons une nouvelle classe d'objets combinatoires qui peuvent décrire toutes les subdivisions d'une plus grande classe de polytopes.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Cesar Ceballos ◽  
Arnau Padrol ◽  
Camilo Sarmiento

International audience We introduce the Dyck path triangulation of the cartesian product of two simplices $\Delta_{n-1}\times\Delta_{n-1}$. The maximal simplices of this triangulation are given by Dyck paths, and its construction naturally generalizes to produce triangulations of $\Delta_{r\ n-1}\times\Delta_{n-1}$ using rational Dyck paths. Our study of the Dyck path triangulation is motivated by extendability problems of partial triangulations of products of two simplices. We show that whenever$m\geq k>n$, any triangulations of $\Delta_{m-1}^{(k-1)}\times\Delta_{n-1}$ extends to a unique triangulation of $\Delta_{m-1}\times\Delta_{n-1}$. Moreover, with an explicit construction, we prove that the bound $k>n$ is optimal. We also exhibit interpretations of our results in the language of tropical oriented matroids, which are analogous to classical results in oriented matroid theory. Nous introduisons la triangulation par chemins de Dyck du produit cartésien de deux simplexes $\Delta_{n-1}\times\Delta_{n-1}$. Les simplexes maximaux de cette triangulation sont donnés par des chemins de Dyck, et cette construction se généralise de façon naturelle pour produire des triangulations $\Delta_{r\ n-1}\times\Delta_{n-1}$ qui utilisent des chemins de Dyck rationnels. Notre étude de la triangulation par chemins de Dyck est motivée par des problèmes de prolongement de triangulations partielles de produits de deux simplexes. On montre que $m\geq k>n$ alors toute triangulation de $\Delta_{m-1}^{(k-1)}\times\Delta_{n-1}$ se prolonge en une unique triangulation de $\Delta_{m-1}\times\Delta_{n-1}$. De plus, avec une construction explicite, nous montrons que la borne $k>n$ est optimale. Nous présentons aussi des interprétations de nos résultats dans le langage des matroïdes orientés tropicaux, qui sont analogues aux résultats classiques de la théorie des matroïdes orientés.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Anders Claesson ◽  
Svante Linusson

International audience We show that there are $n!$ matchings on $2n$ points without, so called, left (neighbor) nestings. We also define a set of naturally labelled $(2+2)$-free posets, and show that there are $n!$ such posets on $n$ elements. Our work was inspired by Bousquet-Mélou, Claesson, Dukes and Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884―909]. They gave bijections between four classes of combinatorial objects: matchings with no neighbor nestings (due to Stoimenow), unlabelled $(2+2)$-free posets, permutations avoiding a specific pattern, and so called ascent sequences. We believe that certain statistics on our matchings and posets could generalize the work of Bousquet-Mélou et al. and we make a conjecture to that effect. We also identify natural subsets of matchings and posets that are equinumerous to the class of unlabeled $(2+2)$-free posets. We give bijections that show the equivalence of (neighbor) restrictions on nesting arcs with (neighbor) restrictions on crossing arcs. These bijections are thought to be of independent interest. One of the bijections maps via certain upper-triangular integer matrices that have recently been studied by Dukes and Parviainen [Electron. J. Combin. 17 (2010) #R53]. Nous montrons qu'il y a $n!$ couplages sur $2n$ points sans emboîtement (de voisins) à gauche. Nous définissons aussi un ensemble d'EPO (ensembles partiellement ordonnés) sans motif $(2+2)$ naturellement étiquetés, et montrons qu'il y a $n!$ tels EPO sur $n$ éléments. Notre travail a été inspiré par Bousquet-Mélou, Claesson, Dukes et Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884―909]. Ces auteurs donnent des bijections entre quatre classes d'objets combinatoires: couplages sans emboîtement de voisins (dû à Stoimenow), EPO sans motif $(2+2)$ non étiquetés, permutations évitant un certain motif, et des objets appelés suites à montées. Nous pensons que certaines statistiques sur nos couplages et nos EPO pourraient généraliser le travail de Bousquet-Mélou et al. et nous proposons une conjecture à ce sujet. Nous identifions aussi des sous-ensembles naturels de couplages et d'EPO qui sont énumérés par la même séquence que la classe des EPO sans motif $(2+2)$ non étiquetés. Nous donnons des bijections qui démontrent l'équivalence entre les restrictions sur les emboîtements (d'arcs voisins) et les restrictions sur les croisements (d'arcs voisins). Nous pensons que ces bijections présentent un intérêt propre. L'une de ces bijections passe par certaines matrices triangulaires supérieures à coefficients entiers qui ont été récemment étudiées par Dukes et Parviainen [Electron. J. Combin. 17 (2010) #R53].


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Arnau Padrol

International audience A $d$-polytope $P$ is neighborly if every subset of $\lfloor\frac{d}{2}\rfloor $vertices is a face of $P$. In 1982, Shemer introduced a sewing construction that allows to add a vertex to a neighborly polytope in such a way as to obtain a new neighborly polytope. With this, he constructed superexponentially many different neighborly polytopes. The concept of neighborliness extends naturally to oriented matroids. Duals of neighborly oriented matroids also have a nice characterization: balanced oriented matroids. In this paper, we generalize Shemer's sewing construction to oriented matroids, providing a simpler proof. Moreover we provide a new technique that allows to construct balanced oriented matroids. In the dual setting, it constructs a neighborly oriented matroid whose contraction at a particular vertex is a prescribed neighborly oriented matroid. We compare the families of polytopes that can be constructed with both methods, and show that the new construction allows to construct many new polytopes. Un $d$-polytope $P$ est $\textit{neighborly}$ si tout sous-ensemble de $\lfloor\frac{d}{2}\rfloor $ sommets forme une face de $P$. En 1982, Shemer a introduit une construction de couture qui permet de rajouter un sommet à un polytope $\textit{neighborly}$ et d'obtenir un nouveau polytope $\textit{neighborly}$. Cette construction lui permet de construire un nombre super-exponentiel de polytopes $\textit{neighborly}$ distincts. Le concept de $\textit{neighborliness}$ s'étend naturellement aux matroïdes orientés. Les duaux de matroïdes orientés $\textit{neighborly}$ ont de plus une belle caractérisation: ce sont les matroïdes orientés équilibrés. Dans cet article, nous généralisons la construction de couture de Shemer aux matroïdes orientés, ce qui en fournit une démonstration plus simple. Par ailleurs, nous proposons une nouvelle technique qui permet de construire matroïdes orientés équilibrés. Dans le cadre dual, on obtient un matroïde $\textit{neighborly}$ dont la contraction à un sommet distinguè est un matroïde $\textit{neighborly}$ prescrit. Nous comparons les familles de polytopes qui peuvent être construites avec ces deux méthodes, et montrons que la nouvelle construction permet de construire plusieurs nouveaux polytopes.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Lily Yen

International audience The equidistribution of many crossing and nesting statistics exists in several combinatorial objects like matchings, set partitions, permutations, and embedded labelled graphs. The involutions switching nesting and crossing numbers for set partitions given by Krattenthaler, also by Chen, Deng, Du, Stanley, and Yan, and for permutations given by Burrill, Mishna, and Post involved passing through tableau-like objects. Recently, Chen and Guo for matchings, and Marberg for set partitions extended the result to coloured arc annotated diagrams. We prove that symmetric joint distribution continues to hold for arc-coloured permutations. As in Marberg's recent work, but through a different interpretation, we also conclude that the ordinary generating functions for all j-noncrossing, k-nonnesting, r-coloured permutations according to size n are rational functions. We use the interpretation to automate the generation of these rational series for both noncrossing and nonnesting coloured set partitions and permutations. <begin>otherlanguage*</begin>french L'équidistribution de plusieurs statistiques décrites en termes d'emboitements et de chevauchements d'arcs s'observes dans plusieurs familles d'objects combinatoires, tels que les couplages, partitions d'ensembles, permutations et graphes étiquetés. L'involution échangeant le nombre d'emboitements et de chevauchements dans les partitions d'ensemble due à Krattenthaler, et aussi Chen, Deng, Du, Stanley et Yan, et l'involution similaire dans les permutations due à Burrill, Mishna et Post, requièrent d'utiliser des objets de type tableaux. Récemment, Chen et Guo pour les couplages, et Marberg pour les partitions d'ensembles, ont étendu ces résultats au cas de diagrammes arc-annotés coloriés. Nous démontrons que la propriété d'équidistribution s'observe est aussi vraie dans le cas de permutations aux arcs coloriés. Tout comme dans le travail résent de Marberg, mais via un autre chemin, nous montrons que les séries génératrices ordinaires des permutations r-coloriées ayant au plus j chevauchements et k emboitements, comptées selon la taille n, sont des fonctions rationnelles. Nous décrivons aussi des algorithmes permettant de calculer ces fonctions rationnelles pour les partitions d'ensembles et les permutations coloriées sans emboitement ou sans chevauchement. <end>otherlanguage*</end>


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Mireille Bousquet-Mélou ◽  
Anders Claesson ◽  
Mark Dukes ◽  
Sergey Kitaev

International audience We present statistic-preserving bijections between four classes of combinatorial objects. Two of them, the class of unlabeled $(\textrm{2+2})$-free posets and a certain class of chord diagrams (or involutions), already appeared in the literature, but were apparently not known to be equinumerous. The third one is a new class of pattern avoiding permutations, and the fourth one consists of certain integer sequences called $\textit{ascent sequences}$. We also determine the generating function of these classes of objects, thus recovering a non-D-finite series obtained by Zagier for chord diagrams. Finally, we characterize the ascent sequences that correspond to permutations avoiding the barred pattern $3\bar{1}52\bar{4}$, and enumerate those permutations, thus settling a conjecture of Pudwell. Nous présentons des bijections, transportant de nombreuses statistiques, entre quatre classes d'objets. Deux d'entre elles, la classe des EPO (ensembles partiellement ordonnés) sans motif $(\textrm{2+2})$ et une certaine classe d'involutions, sont déjà apparues dans la littérature. La troisième est une classe de permutations à motifs exclus, et la quatrième une classe de suites que nous appelons $\textit{suites à montées}$. Nous déterminons ensuite la série génératrice de ces classes, retrouvant ainsi un résultat prouvé par Zagier pour les involutions sus-mentionnées. La série obtenue n'est pas D-finie. Apparemment, le fait qu'elle compte aussi les EPO sans motif $(\textrm{2+2})$ est nouveau. Finalement, nous caractérisons les suites à montées qui correspondent aux permutations évitant le motif barré $3\bar{1}52\bar{4}$ et énumérons ces permutations, ce qui démontre une conjecture de Pudwell.


2021 ◽  
Vol Volume 34 - 2020 - Special... ◽  
Author(s):  
Landry Steve Noulawe Tchamanbe ◽  
Paulin MELATAGIA YONTA

International audience Reinforcement learning algorithms have succeeded over the years in achieving impressive results in a variety of fields. However, these algorithms suffer from certain weaknesses highlighted by Refael Vivanti and al. that may explain the regression of even well-trained agents in certain environments : the difference in variance on rewards between areas of the environment. This difference in variance leads to two problems : Boring Area Trap and Manipulative consultant. We note that the Adaptive Symmetric Reward Noising (ASRN) algorithm proposed by Refael Vivanti and al. has limitations for environments with the following characteristics : long game times and multiple boring area environments. To overcome these problems, we propose three algorithms derived from the ASRN algorithm called Rebooted Adaptive Symmetric Reward Noising (RASRN) : Continuous ε decay RASRN, Full RASRN and Stepwise α decay RASRN. Thanks to two series of experiments carried out on the k-armed bandit problem, we show that our algorithms can better correct the Boring Area Trap problem. Les algorithmes d'apprentissage par renforcement ont réussi au fil des années à obtenir des résultats impressionnants dans divers domaines. Cependant, ces algorithmes souffrent de certaines faiblesses mises en évidence par Refael Vivanti et al. qui peuvent expliquer la régression des agents même bien entraînés dans certains environnements : la différence de variance sur les récompenses entre les zones de l'environnement. Cette différence de variance conduit à deux problèmes : le Piège de la Zone Ennuyeuse (Boring Area Trap) et le Consultant Manipulateur. Nous observons que l'algorithme Adaptive Symmetric Reward Noising (ASRN) proposé par Refael Vivanti et al. présente des limites pour des environnements ayant les caractéristiques suivantes : longues durées de jeu et environnement à zones ennuyeuses multiples. Pour pallier ces problèmes, nous proposons trois algorithmes dérivés de l'algorithme ASRN nommés Rebooted Adaptive Symmetric Reward Noi-sing (RASRN) : Continuous ε decay RASRN, Full RASRN et Stepwise α decay RASRN. Grâce à deux séries d'expérimentations menées sur le problème du bandit à k bras, nous montrons que ces algorithmes permettent de mieux corriger le problème du piège de la zone ennuyeuse.


2014 ◽  
Vol Volume 17 - 2014 - Special... ◽  
Author(s):  
Mandicou Ba ◽  
Olivier Flauzac ◽  
Bachar Salim Haggar ◽  
Rafik MAKHLOUFI ◽  
Florent Nolot ◽  
...  

International audience In this paper, we present a self-stabilizing asynchronous distributed clustering algorithm that builds non-overlapping k-hops clusters. Our approach does not require any initialization. It is based only on information from neighboring nodes with periodic messages exchange. Starting from an arbitrary configuration, the network converges to a stable state after a finite number of steps. Firstly, we prove that the stabilization is reached after at most n+2 transitions and requires (u+1)* log(2n+k+3) bits per node, whereΔu represents node's degree, n is the number of network nodes and k represents the maximum hops number. Secondly, using OMNet++ simulator, we performed an evaluation of our proposed algorithm. Dans cet article, nous proposons un algorithme de structuration auto-stabilisant, distribuéet asynchrone qui construit des clusters de diamètre au plus 2k. Notre approche ne nécessite aucuneinitialisation. Elle se fonde uniquement sur l’information provenant des noeuds voisins à l’aided’échanges de messages. Partant d’une configuration quelconque, le réseau converge vers un étatstable après un nombre fini d’étapes. Nous montrons par preuve formelle que pour un réseau de nnoeuds, la stabilisation est atteinte en au plus n + 2 transitions. De plus, l’algorithme nécessite uneoccupation mémoire de (u + 1) log(2n + k + 3) bits pour chaque noeud u où u représente ledegré (nombre de voisins) de u et k la distance maximale dans les clusters. Afin de consolider lesrésultats théoriques obtenus, nous avons effectué une campagne de simulation sous OMNeT++ pourévaluer la performance de notre solution.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Federico Ardila ◽  
Felipe Rincón ◽  
Lauren Williams

International audience We investigate the role that non-crossing partitions play in the study of positroids, a class of matroids introduced by Postnikov. We prove that every positroid can be constructed uniquely by choosing a non-crossing partition on the ground set, and then freely placing the structure of a connected positroid on each of the blocks of the partition. We use this to enumerate connected positroids, and we prove that the probability that a positroid on [n] is connected equals $1/e^2$ asymptotically. We also prove da Silva's 1987 conjecture that any positively oriented matroid is a positroid; that is, it can be realized by a set of vectors in a real vector space. It follows from this result that the positive matroid Grassmannian (or <i>positive MacPhersonian</i>) is homeomorphic to a closed ball.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Silke Horn

International audience Tropical oriented matroids were defined by Ardila and Develin in 2007. They are a tropical analogue of classical oriented matroids in the sense that they encode the properties of the types of points in an arrangement of tropical hyperplanes – in much the same way as the covectors of (classical) oriented matroids describe the types in arrangements of linear hyperplanes. Not every oriented matroid can be realised by an arrangement of linear hyperplanes though. The famous Topological Representation Theorem by Folkman and Lawrence, however, states that every oriented matroid can be represented as an arrangement of $\textit{pseudo}$hyperplanes. Ardila and Develin proved that tropical oriented matroids can be represented as mixed subdivisions of dilated simplices. In this paper I prove that this correspondence is a bijection. Moreover, I present a tropical analogue for the Topological Representation Theorem. La notion de matroïde orientè tropical a été introduite par Ardila et Develin en 2007. Ils sont un analogue des matroïdes orientés classiques dans le sens où ils codent les propriétés des types de points dans un arrangement d'hyperplans tropicaux – d'une manière très similaire à celle dont les covecteurs des matroïdes orientés (classiques) décrivent les types de points dans les arrangements d'hyperplans linéaires. Tous les matroïdes orientés ne peuvent pas être représentés par un arrangement d'hyperplans linéaires. Cependant le célèbre théorème de représentation topologique de Folkman et Lawrence affirme que tout matroïde orientè peut être représenté par un arrangement de $\textit{pseudo}$-hyperplans. Ardila et Develin ont prouvè que les matroïdes orientés tropicaux peuvent être représentés par des sous-divisions mixtes de simplexes dilatés. Je prouve dans cet article que cette correspondance est une bijection. Je présente en outre, un analogue tropical du théorème de représentation topologique.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Kevin Dilks

International audience Baxter numbers are known to count several families of combinatorial objects, all of which come equipped with natural involutions. In this paper, we add a combinatorial family to the list, and show that the known bijections between these objects respect these involutions. We also give a formula for the number of objects fixed under this involution, showing that it is an instance of Stembridge's "$q=-1$ phenomenon''. Les nombres Baxter comptent plusieurs familles d'objets combinatoires, qui sont tous équipés avec des involutions naturels. Dans ce papier, nous ajoutons une famille combinatoire à la liste, et nous montrons que les bijections connus entre ces objets respectent ces involutions. En plus, nous donnons une formule pour le nombre d'objets fixés par cette involution et nous montrons qu'elle est une instance du "phénomène $q =-1$'' de Stembridge.


Sign in / Sign up

Export Citation Format

Share Document