scholarly journals Involutions on Baxter Objects

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Kevin Dilks

International audience Baxter numbers are known to count several families of combinatorial objects, all of which come equipped with natural involutions. In this paper, we add a combinatorial family to the list, and show that the known bijections between these objects respect these involutions. We also give a formula for the number of objects fixed under this involution, showing that it is an instance of Stembridge's "$q=-1$ phenomenon''. Les nombres Baxter comptent plusieurs familles d'objets combinatoires, qui sont tous équipés avec des involutions naturels. Dans ce papier, nous ajoutons une famille combinatoire à la liste, et nous montrons que les bijections connus entre ces objets respectent ces involutions. En plus, nous donnons une formule pour le nombre d'objets fixés par cette involution et nous montrons qu'elle est une instance du "phénomène $q =-1$'' de Stembridge.

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Suho Oh ◽  
Hwanchul Yoo

International audience Develin and Sturmfels showed that regular triangulations of $\Delta_{n-1} \times \Delta_{d-1}$ can be thought of as tropical polytopes. Tropical oriented matroids were defined by Ardila and Develin, and were conjectured to be in bijection with all subdivisions of $\Delta_{n-1} \times \Delta_{d-1}$. In this paper, we show that any triangulation of $\Delta_{n-1} \times \Delta_{d-1}$ encodes a tropical oriented matroid. We also suggest a new class of combinatorial objects that may describe all subdivisions of a bigger class of polytopes. Develin et Sturmfels ont montré que les triangulations de $\Delta_{n-1} \times \Delta_{d-1}$ peuvent être considérées comme des polytopes tropicaux. Les matroïdes orientés tropicaux ont été définis par Ardila et Develin, et ils ont été conjecturés être en bijection avec les subdivisions de $\Delta_{n-1} \times \Delta_{d-1}$. Dans cet article, nous montrons que toute triangulation de $\Delta_{n-1} \times \Delta_{d-1}$ encode un matroïde orienté tropical. De plus, nous proposons une nouvelle classe d'objets combinatoires qui peuvent décrire toutes les subdivisions d'une plus grande classe de polytopes.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Lily Yen

International audience The equidistribution of many crossing and nesting statistics exists in several combinatorial objects like matchings, set partitions, permutations, and embedded labelled graphs. The involutions switching nesting and crossing numbers for set partitions given by Krattenthaler, also by Chen, Deng, Du, Stanley, and Yan, and for permutations given by Burrill, Mishna, and Post involved passing through tableau-like objects. Recently, Chen and Guo for matchings, and Marberg for set partitions extended the result to coloured arc annotated diagrams. We prove that symmetric joint distribution continues to hold for arc-coloured permutations. As in Marberg's recent work, but through a different interpretation, we also conclude that the ordinary generating functions for all j-noncrossing, k-nonnesting, r-coloured permutations according to size n are rational functions. We use the interpretation to automate the generation of these rational series for both noncrossing and nonnesting coloured set partitions and permutations. <begin>otherlanguage*</begin>french L'équidistribution de plusieurs statistiques décrites en termes d'emboitements et de chevauchements d'arcs s'observes dans plusieurs familles d'objects combinatoires, tels que les couplages, partitions d'ensembles, permutations et graphes étiquetés. L'involution échangeant le nombre d'emboitements et de chevauchements dans les partitions d'ensemble due à Krattenthaler, et aussi Chen, Deng, Du, Stanley et Yan, et l'involution similaire dans les permutations due à Burrill, Mishna et Post, requièrent d'utiliser des objets de type tableaux. Récemment, Chen et Guo pour les couplages, et Marberg pour les partitions d'ensembles, ont étendu ces résultats au cas de diagrammes arc-annotés coloriés. Nous démontrons que la propriété d'équidistribution s'observe est aussi vraie dans le cas de permutations aux arcs coloriés. Tout comme dans le travail résent de Marberg, mais via un autre chemin, nous montrons que les séries génératrices ordinaires des permutations r-coloriées ayant au plus j chevauchements et k emboitements, comptées selon la taille n, sont des fonctions rationnelles. Nous décrivons aussi des algorithmes permettant de calculer ces fonctions rationnelles pour les partitions d'ensembles et les permutations coloriées sans emboitement ou sans chevauchement. <end>otherlanguage*</end>


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Anders Claesson ◽  
Svante Linusson

International audience We show that there are $n!$ matchings on $2n$ points without, so called, left (neighbor) nestings. We also define a set of naturally labelled $(2+2)$-free posets, and show that there are $n!$ such posets on $n$ elements. Our work was inspired by Bousquet-Mélou, Claesson, Dukes and Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884―909]. They gave bijections between four classes of combinatorial objects: matchings with no neighbor nestings (due to Stoimenow), unlabelled $(2+2)$-free posets, permutations avoiding a specific pattern, and so called ascent sequences. We believe that certain statistics on our matchings and posets could generalize the work of Bousquet-Mélou et al. and we make a conjecture to that effect. We also identify natural subsets of matchings and posets that are equinumerous to the class of unlabeled $(2+2)$-free posets. We give bijections that show the equivalence of (neighbor) restrictions on nesting arcs with (neighbor) restrictions on crossing arcs. These bijections are thought to be of independent interest. One of the bijections maps via certain upper-triangular integer matrices that have recently been studied by Dukes and Parviainen [Electron. J. Combin. 17 (2010) #R53]. Nous montrons qu'il y a $n!$ couplages sur $2n$ points sans emboîtement (de voisins) à gauche. Nous définissons aussi un ensemble d'EPO (ensembles partiellement ordonnés) sans motif $(2+2)$ naturellement étiquetés, et montrons qu'il y a $n!$ tels EPO sur $n$ éléments. Notre travail a été inspiré par Bousquet-Mélou, Claesson, Dukes et Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884―909]. Ces auteurs donnent des bijections entre quatre classes d'objets combinatoires: couplages sans emboîtement de voisins (dû à Stoimenow), EPO sans motif $(2+2)$ non étiquetés, permutations évitant un certain motif, et des objets appelés suites à montées. Nous pensons que certaines statistiques sur nos couplages et nos EPO pourraient généraliser le travail de Bousquet-Mélou et al. et nous proposons une conjecture à ce sujet. Nous identifions aussi des sous-ensembles naturels de couplages et d'EPO qui sont énumérés par la même séquence que la classe des EPO sans motif $(2+2)$ non étiquetés. Nous donnons des bijections qui démontrent l'équivalence entre les restrictions sur les emboîtements (d'arcs voisins) et les restrictions sur les croisements (d'arcs voisins). Nous pensons que ces bijections présentent un intérêt propre. L'une de ces bijections passe par certaines matrices triangulaires supérieures à coefficients entiers qui ont été récemment étudiées par Dukes et Parviainen [Electron. J. Combin. 17 (2010) #R53].


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Mark Dukes ◽  
Yvan Le Borgne

International audience We give a polyomino characterisation of recurrent configurations of the sandpile model on the complete bipartite graph $K_{m,n}$ in which one designated vertex is the sink. We present a bijection from these recurrent configurations to decorated parallelogram polyominoes whose bounding box is a $m×n$ rectangle. Other combinatorial structures appear in special cases of this correspondence: for example bicomposition matrices (a matrix analogue of set partitions), and (2+2)-free posets. A canonical toppling process for recurrent configurations gives rise to a path within the associated parallelogram polyominoes. We define a collection of polynomials that we call $q,t$-Narayana polynomials, the generating functions of the bistatistic $(\mathsf{area ,parabounce} )$ on the set of parallelogram polyominoes, akin to Haglund's $(\mathsf{area ,hagbounce} )$ bistatistic on Dyck paths. In doing so, we have extended a bistatistic of Egge et al. to the set of parallelogram polyominoes. This is one answer to their question concerning extensions to other combinatorial objects. We conjecture the $q,t$-Narayana polynomials to be symmetric and discuss the proofs for numerous special cases. We also show a relationship between the $q,t$-Catalan polynomials and our bistatistic $(\mathsf{area ,parabounce}) $on a subset of parallelogram polyominoes. Pour le modèle du tas de sable sur un graphe $K_m,n$ biparti complet, on donne une description des configurations rècurrentes à l'aide d'une bijection avec des polyominos parallèlogrammes dècorès de rectangle englobant $m×n$. D'autres classes combinatoires apparaissent comme des cas particuliers de cette construction: par exemple les matrices de bicomposition et les ordres partiels évitant le motif (2+2). Un processus d'éboulement canonique des configurations récurrentes se traduit par un chemin bondissant dans le polyomino parallèlogramme associè. Nous définissons une famille de polynômes, baptisée de $q,t$-Narayana, à travers la distribution d'une paire de statistique $(\mathsf{aire, poidscheminbondissant})$ sur les polyominos parallélogrammes similaire à celle de Haglund définissant les polynômes de $q,t$-Catalan sur les chemins de Dyck. Ainsi nous étendons une paire de statistique de Egge et d'autres à l'ensemble des polynominos parallélogrammes. Cela répond à l'une de leur question sur des généralistations à d'autres objets combinatoires. Nous conjecturons que les polynômes de $q,t$-Narayana sont symétriques et discutons des preuves de plusieurs cas particuliers. Nous montrons ègalement une relation avec les polynômes de $q,t$-Catalan en restreignant notre paire de statistique à un sous-ensemble des polyominos parallélogrammes.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Federico Ardila ◽  
Florian Block

International audience The Severi variety parametrizes plane curves of degree $d$ with $\delta$ nodes. Its degree is called the Severi degree. For large enough $d$, the Severi degrees coincide with the Gromov-Witten invariants of $\mathbb{CP}^2$. Fomin and Mikhalkin (2009) proved the 1995 conjecture that for fixed $\delta$, Severi degrees are eventually polynomial in $d$. In this paper, we study the Severi varieties corresponding to a large family of toric surfaces. We prove the analogous result that the Severi degrees are eventually polynomial as a function of the multidegree. More surprisingly, we show that the Severi degrees are also eventually polynomial "as a function of the surface". Our strategy is to use tropical geometry to express Severi degrees in terms of Brugallé and Mikhalkin's floor diagrams, and study those combinatorial objects in detail. An important ingredient in the proof is the polynomiality of the discrete volume of a variable facet-unimodular polytope. La variété de Severi paramétrise les courbes planes de degré $d$ avec $\delta$ nœuds. Son degré s'appelle le degré de Severi. Pour $d$ assez grand, les degrés de Severi coïncident avec les invariants de Gromov-Witten de $\mathbb{CP}^2$. Fomin et Mikhalkin (2009) ont prouvé une conjecture de 1995 que pour $\delta$ fixé, les degrés de Severi sont à terme des polynômes en $d$. Nous étudions les variétés de Severi correspondant à une large famille de surfaces toriques. Nous prouvons le résultat analogue que les degrés de Severi sont à terme des fonctions polynomiales du multidegré. De manière plus surprenante, nous montrons que les degrés de Severi sont à terme des polynômes en tant que "fonction de la surface''. Notre stratégie est d'utiliser la géométrie tropicale pour exprimer les degrés de Severi en fonction des "floor diagrams" de Brugallé et Mikhalkin, et d'utiliser ces objets combinatoires en détail. Un autre ingrédient important de la preuve est la polynomialité du volume discret d'un polytope face-unimodulaire variable.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Jean-Gabriel Luque

International audience We investigate the homogeneous symmetric Macdonald polynomials $P_{\lambda} (\mathbb{X} ;q,t)$ for the specialization $t=q^k$. We show an identity relying the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$ and $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. As a consequence, we describe an operator whose eigenvalues characterize the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$. Nous nous intéressons aux propriétés des polynômes de Macdonald symétriques $P_{\lambda} (\mathbb{X} ;q,t)$ pour la spécialisation $t=q^k$. En particulier nous montrons une égalité reliant les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$ et $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. Nous en déduisons la description d'un opérateur dont les valeurs propres caractérisent les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Kevin Dilks ◽  
T. Kyle Petersen ◽  
John R. Stembridge

International audience Let $W \ltimes L$ be an irreducible affine Weyl group with Coxeter complex $\Sigma$, where $W$ denotes the associated finite Weyl group and $L$ the translation subgroup. The Steinberg torus is the Boolean cell complex obtained by taking the quotient of $\Sigma$ by the lattice $L$. We show that the ordinary and flag $h$-polynomials of the Steinberg torus (with the empty face deleted) are generating functions over $W$ for a descent-like statistic first studied by Cellini. We also show that the ordinary $h$-polynomial has a nonnegative $\gamma$-vector, and hence, symmetric and unimodal coefficients. In the classical cases, we also provide expansions, identities, and generating functions for the $h$-polynomials of Steinberg tori. Nous considérons un groupe de Weyl affine irréductible $W \ltimes L$ avec complexe de Coxeter $\Sigma$, où $W$ désigne le groupe de Weyl fini associé et $L$ le sous-groupe des translations. Le tore de Steinberg est le complexe cellulaire Booléen obtenu comme le quotient de $\Sigma$ par $L$. Nous montrons que les $h$-polynômes, ordinaires et de drapeaux, du tore de Steinberg (sans la face vide) sont des fonctions génératrices sur $W$ pour une statistique de type descente, étudiée en premier lieu par Cellini. Nous montrons également qu'un $h$-polynôme ordinaire possède un $\gamma$-vecteur positif, et par conséquent, a des coefficients symétriques et unimodaux. Dans les cas classiques, nous donnons également des développements, des identités et des fonctions génératrices pour les $h$-polynômes des tores de Steinberg.


2018 ◽  
Vol Volume 7, Number 1 (Research articles) ◽  
Author(s):  
Joëlle Coutaz ◽  
James L. Crowley

International audience We present an experience with the development and evaluation of AppsGate, an ecosystem for the home that can be programmed by end-users. We show the benefits from using the homes of the project team members as real-life living-labs. In particular, we discuss the first person perspective experience as an effective way to conduct longitudinal experiments in real world settings. We conclude that a programmable habitat is desirable provided that attention cost is minimized Cet article présente un retour d’expérience avec la mise en oeuvre et l’évaluation d’AppsGate, un écosystème domestique programmable par l’habitant. Nous montrons l’apport de l’utilisation des domiciles de membres du projet tout au long du processus de développement, et notamment l’intérêt de « vivre avec » comme technique d’expérimentation longitudinale


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Gaku Liu

International audience In this extended abstract we consider mixed volumes of combinations of hypersimplices. These numbers, called mixed Eulerian numbers, were first considered by A. Postnikov and were shown to satisfy many properties related to Eulerian numbers, Catalan numbers, binomial coefficients, etc. We give a general combinatorial interpretation for mixed Eulerian numbers and prove the above properties combinatorially. In particular, we show that each mixed Eulerian number enumerates a certain set of permutations in $S_n$. We also prove several new properties of mixed Eulerian numbers using our methods. Finally, we consider a type $B$ analogue of mixed Eulerian numbers and give an analogous combinatorial interpretation for these numbers. Dans ce résumé étendu nous considérons les volumes mixtes de combinaisons d’hyper-simplexes. Ces nombres, appelés les nombres Eulériens mixtes, ont été pour la première fois étudiés par A. Postnikov, et il a été montré qu’ils satisfont à de nombreuses propriétés reliées aux nombres Eulériens, au nombres de Catalan, aux coefficients binomiaux, etc. Nous donnons une interprétation combinatoire générale des nombres Eulériens mixtes, et nous prouvons combinatoirement les propriétés mentionnées ci-dessus. En particulier, nous montrons que chaque nombre Eulérien mixte compte les éléments d’un certain sous-ensemble de l’ensemble des permutations $S_n$. Nous établissons également plusieurs nouvelles propriétés des nombres Eulériens mixtes grâce à notre méthode. Pour finir, nous introduisons une généralisation en type $B$ des nombres Eulériens mixtes, et nous en donnons une interprétation combinatoire analogue.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Rachel Karpman

International audience A <i>parametrization</i> of a positroid variety $\Pi$ of dimension $d$ is a regular map $(\mathbb{C}^{\times})^{d} \rightarrow \Pi$ which is birational onto a dense subset of $\Pi$. There are several remarkable combinatorial constructions which yield parametrizations of positroid varieties. We investigate the relationship between two families of such parametrizations, and prove they are essentially the same. Our first family is defined in terms of Postnikov’s <i>boundary measurement map</i>, and the domain of each parametrization is the space of edge weights of a planar network. We focus on a special class of planar networks called <i>bridge graphs</i>, which have applications to particle physics. Our second family arises from Marsh and Rietsch’s parametrizations of Deodhar components of the flag variety, which are indexed by certain subexpressions of reduced words. Projecting to the Grassmannian gives a family of parametrizations for each positroid variety. We show that each Deodhar parametrization for a positroid variety corresponds to a bridge graph, while each parametrization from a bridge graph agrees with some projected Deodhar parametrization. Soit $\Pi$ une variété positroïde. Nous appellerons <i>paramétrisation</i> toute application régulière $(\mathbb{C}^{\times})^{d} \rightarrow \Pi$ qui est un isomorphisme birégulier sur un sous-ensemble dense de $\Pi$. On sait que plusieurs constructions combinatoires donnent des paramétrisations intéressantes. Le but du présent article est d’investiguer deux familles de telles paramétrisations et de montrer, essentiellement, qu’elles coïncident. La première famille trouve son origine dans la <i>fonction de mesure des bords</i> de Postnikov. Le domaine de chaque paramétrisation est en ce cas-ci l’ensemble de poids des arêtes d’un réseau planaire pondéré. Nous nous concentrons sur une classe particulière de réseaux planaires, les <i>graphes de ponts</i>, ayant des applications à la physique subatomique. La deuxième famille provient des paramétrisations de Marsh et de Rietsch des composantes de Deodhar (indexées par certaines sous-expressions de mots réduits de permutations) de la variété de drapeaux. On obtient alors des paramétrisations de cellules de positroïdes en appliquant la projection à la grassmannienne. Nous montrons que chaque paramétrisation de Deodhar correspond à un graphe de ponts; d’autre part, chaque paramétrisation provenant d’un graphe de ponts s’accorde avec quelque paramétrisation de Deodhar.


Sign in / Sign up

Export Citation Format

Share Document