scholarly journals Non-crossing trees revisited: cutting down and spanning subtrees

2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Alois Panholzer

International audience Here we consider two parameters for random non-crossing trees: $\textit{(i)}$ the number of random cuts to destroy a size-$n$ non-crossing tree and $\textit{(ii)}$ the spanning subtree-size of $p$ randomly chosen nodes in a size-$n$ non-crossing tree. For both quantities, we are able to characterise for $n → ∞$ the limiting distributions. Non-crossing trees are almost conditioned Galton-Watson trees, and it has been already shown, that the contour and other usually associated discrete excursions converge, suitable normalised, to the Brownian excursion. We can interpret parameter $\textit{(ii)}$ as a functional of a conditioned random walk, and although we do not have such an interpretation for parameter $\textit{(i)}$, we obtain here limiting distributions, that are also arising as limits of some functionals of conditioned random walks.

1978 ◽  
Vol 15 (02) ◽  
pp. 280-291 ◽  
Author(s):  
Peichuen Kao

Let {ξ k : k ≧ 1} be a sequence of independent, identically distributed random variables with E{ξ 1} = μ ≠ 0. Form the random walk {S n : n ≧ 0} by setting S 0, S n = ξ 1 + ξ 2 + ··· + ξ n , n ≧ 1. Define the random function Xn by setting where α is a norming constant. Let N denote the hitting time of the set (–∞, 0] by the random walk. The principal result in this paper is to show (under appropriate conditions on the distribution of ξ 1) that the finite-dimensional distributions of Xn , conditioned on n < N < ∞ converge to those of the Brownian excursion process.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Megan Bernstein

International audience The involution walk is a random walk on the symmetric group generated by involutions with a number of 2-cycles sampled from the binomial distribution with parameter p. This is a parallelization of the lazy transposition walk onthesymmetricgroup.Theinvolutionwalkisshowninthispapertomixfor1 ≤p≤1fixed,nsufficientlylarge 2 in between log1/p(n) steps and log2/(1+p)(n) steps. The paper introduces a new technique for finding eigenvalues of random walks on the symmetric group generated by many conjugacy classes using the character polynomial for the characters of the representations of the symmetric group. This is especially efficient at calculating the large eigenvalues. The smaller eigenvalues are handled by developing monotonicity relations that also give after sufficient time the likelihood order, the order from most likely to least likely state. The walk was introduced to study a conjecture about a random walk on the unitary group from the information theory of back holes.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Endre Csáki ◽  
Yueyun Hu

International audience Consider a simple symmetric random walk on the line. The parts of the random walk between consecutive returns to the origin are called excursions. The heights and lengths of these excursions can be arranged in decreasing order. In this paper we give the exact and limiting distributions of these ranked quantities. These results are analogues of the corresponding results of Pitman and Yor [1997, 1998, 2001] for Brownian motion.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Serguei Yu. Popov

International audience We review some recent results for a system of simple random walks on graphs, known as \emphfrog model. Also, we discuss several modifications of this model, and present a few open problems. A simple version of the frog model can be described as follows: There are active and sleeping particles living on some graph. Each active particle performs a simple random walk with discrete time and at each moment it may disappear with probability 1-p. When an active particle hits a sleeping particle, the latter becomes active.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michael Drmota

International audience In this paper we consider discrete random walks on infinite graphs that are generated by copying and shifting one finite (strongly connected) graph into one direction and connecting successive copies always in the same way. With help of generating functions it is shown that there are only three types for the asymptotic behaviour of the random walk. It either converges to the stationary distribution or it can be approximated in terms of a reflected Brownian motion or by a Brownian motion. In terms of Markov chains these cases correspond to positive recurrence, to null recurrence, and to non recurrence.


2008 ◽  
Vol 40 (01) ◽  
pp. 206-228 ◽  
Author(s):  
Alex Iksanov ◽  
Martin Möhle

LetS0:= 0 andSk:=ξ1+ ··· +ξkfork∈ ℕ := {1, 2, …}, where {ξk:k∈ ℕ} are independent copies of a random variableξwith values in ℕ and distributionpk:= P{ξ=k},k∈ ℕ. We interpret the random walk {Sk:k= 0, 1, 2, …} as a particle jumping to the right through integer positions. Fixn∈ ℕ and modify the process by requiring that the particle is bumped back to its current state each time a jump would bring the particle to a state larger than or equal ton. This constraint defines an increasing Markov chain {Rk(n):k= 0, 1, 2, …} which never reaches the staten. We call this process a random walk with barriern. LetMndenote the number of jumps of the random walk with barriern. This paper focuses on the asymptotics ofMnasntends to ∞. A key observation is that, underp1> 0, {Mn:n∈ ℕ} satisfies the distributional recursionM1= 0 andforn= 2, 3, …, whereInis independent ofM2, …,Mn−1with distribution P{In=k} =pk/ (p1+ ··· +pn−1),k∈ {1, …,n− 1}. Depending on the tail behavior of the distribution ofξ, several scalings forMnand corresponding limiting distributions come into play, including stable distributions and distributions of exponential integrals of subordinators. The methods used in this paper are mainly probabilistic. The key tool is to compare (couple) the number of jumps,Mn, with the first time,Nn, when the unrestricted random walk {Sk:k= 0, 1, …} reaches a state larger than or equal ton. The results are applied to derive the asymptotics of the number of collision events (that take place until there is just a single block) forβ(a,b)-coalescent processes with parameters 0 <a< 2 andb= 1.


2020 ◽  
Vol 57 (2) ◽  
pp. 409-428
Author(s):  
Tuan-Minh Nguyen ◽  
Stanislav Volkov

AbstractWe study the limit behaviour of a class of random walk models taking values in the standard d-dimensional ( $d\ge 1$ ) simplex. From an interior point z, the process chooses one of the $d+1$ vertices of the simplex, with probabilities depending on z, and then the particle randomly jumps to a new location z′ on the segment connecting z to the chosen vertex. In some special cases, using properties of the Beta distribution, we prove that the limiting distributions of the Markov chain are Dirichlet. We also consider a related history-dependent random walk model in [0, 1] based on an urn-type scheme. We show that this random walk converges in distribution to an arcsine random variable.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Joshua Cooper ◽  
Benjamin Doerr ◽  
Joel Spencer ◽  
Gábor Tardos

International audience We analyze the one-dimensional version of Jim Propp's $P$-machine, a simple deterministic process that simulates a random walk on $\mathbb{Z}$. The "output'' of the machine is astonishingly close to the expected behavior of a random walk, even on long intervals of space and time.


Paleobiology ◽  
2006 ◽  
Vol 32 (4) ◽  
pp. 578-601 ◽  
Author(s):  
Gene Hunt

For almost 30 years, paleontologists have analyzed evolutionary sequences in terms of simple null models, most commonly random walks. Despite this long history, there has been little discussion of how model parameters may be estimated from real paleontological data. In this paper, I outline a likelihood-based framework for fitting and comparing models of phyletic evolution. Because of its usefulness and historical importance, I focus on a general form of the random walk model. The long-term dynamics of this model depend on just two parameters: the mean (μstep) and variance (σ2step) of the distribution of evolutionary transitions (or “steps”). The value of μstepdetermines the directionality of a sequence, and σ2stepgoverns its volatility. Simulations show that these two parameters can be inferred reliably from paleontological data regardless of how completely the evolving lineage is sampled.In addition to random walk models, suitable modification of the likelihood function permits consideration of a wide range of alternative evolutionary models. Candidate evolutionary models may be compared on equal footing using information statistics such as the Akaike Information Criterion (AIC). Two extensions to this method are developed: modeling stasis as an evolutionary mode, and assessing the homogeneity of dynamics across multiple evolutionary sequences. Within this framework, I reanalyze two well-known published data sets: tooth measurements from the Eocene mammalCantius, and shell shape in the planktonic foraminiferaContusotruncana. These analyses support previous interpretations about evolutionary mode in size and shape variables inCantius, and confirm the significantly directional nature of shell shape evolution inContusotruncana. In addition, this model-fitting approach leads to a further insight about the geographic structure of evolutionary change in this foraminiferan lineage.


2008 ◽  
Vol 40 (1) ◽  
pp. 206-228 ◽  
Author(s):  
Alex Iksanov ◽  
Martin Möhle

Let S0 := 0 and Sk := ξ1 + ··· + ξk for k ∈ ℕ := {1, 2, …}, where {ξk : k ∈ ℕ} are independent copies of a random variable ξ with values in ℕ and distribution pk := P{ξ = k}, k ∈ ℕ. We interpret the random walk {Sk : k = 0, 1, 2, …} as a particle jumping to the right through integer positions. Fix n ∈ ℕ and modify the process by requiring that the particle is bumped back to its current state each time a jump would bring the particle to a state larger than or equal to n. This constraint defines an increasing Markov chain {Rk(n) : k = 0, 1, 2, …} which never reaches the state n. We call this process a random walk with barrier n. Let Mn denote the number of jumps of the random walk with barrier n. This paper focuses on the asymptotics of Mn as n tends to ∞. A key observation is that, under p1 > 0, {Mn : n ∈ ℕ} satisfies the distributional recursion M1 = 0 and for n = 2, 3, …, where In is independent of M2, …, Mn−1 with distribution P{In = k} = pk / (p1 + ··· + pn−1), k ∈ {1, …, n − 1}. Depending on the tail behavior of the distribution of ξ, several scalings for Mn and corresponding limiting distributions come into play, including stable distributions and distributions of exponential integrals of subordinators. The methods used in this paper are mainly probabilistic. The key tool is to compare (couple) the number of jumps, Mn, with the first time, Nn, when the unrestricted random walk {Sk : k = 0, 1, …} reaches a state larger than or equal to n. The results are applied to derive the asymptotics of the number of collision events (that take place until there is just a single block) for β(a, b)-coalescent processes with parameters 0 < a < 2 and b = 1.


Sign in / Sign up

Export Citation Format

Share Document