scholarly journals On the link pattern distribution of quarter-turn symmetric FPL configurations

2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Philippe Duchon

International audience We present new conjectures on the distribution of link patterns for fully-packed loop (FPL) configurations that are invariant, or almost invariant, under a quarter turn rotation, extending previous conjectures of Razumov and Stroganov and of de Gier. We prove a special case, showing that the link pattern that is conjectured to be the rarest does have the prescribed probability. As a byproduct, we get a formula for the enumeration of a new class of quasi-symmetry of plane partitions. Nous présentons de nouvelles conjectures portant sur la distribution des schémas de couplage des configurations de boucles compactes (FPL) invariantes, ou presque invariantes, par une rotation d'un quart de tour. Ces nouvelles conjectures étendent des conjectures précédentes dues à Razumov et Stroganov et à de Gier. Dans chaque cas, nous prouvons un cas particulier, en démontrant que le schéma de couplage conjecturé pour être le plus rare a effectivement la probabilité prédite. Nous obtenons également une formule pour l'énumération d'une nouvelle classe de quasi-symétrie de partitions planes.

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Jason Bandlow ◽  
Jennifer Morse

International audience A combinatorial expansion of the Hall-Littlewood functions into the Schur basis of symmetric functions was first given by Lascoux and Schützenberger, with their discovery of the charge statistic. A combinatorial expansion of stable Grassmannian Grothendieck polynomials into monomials was first given by Buch, using set-valued tableaux. The dual basis of the stable Grothendieck polynomials was given a combinatorial expansion into monomials by Lam and Pylyavskyy using reverse plane partitions. We generalize charge to set-valued tableaux and use all of these combinatorial ideas to give a nice expansion of Hall-Littlewood polynomials into the dual Grothendieck basis. \par En associant une charge à un tableau, une formule combinatoire donnant le développement des polynômes de Hall-Littlewood en termes des fonctions de Schur a été obtenue par Lascoux et Schützenberger. Une formule combinatoire donnant le développement des polynômes de Grothendieck Grassmanniens stables en termes des fonctions monomiales a quant à elle été obtenue par Buch à l'aide de tableaux à valeurs sur des ensembles. Finalement, une formule faisant intervenir des partitions planaires inverses a été obtenue par Lam et Pylyavskyy pour donner le développement de la base duale aux polynômes de Grothendieck stables en termes de monômes. Nous généralisons le concept de charge aux tableaux à valeurs sur des ensembles et, en nous servant de toutes ces notions combinatoires, nous obtenons une formule élégante donnant le développement des polynômes de Hall-Littlewood en termes de la base de Grothendieck duale.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
James Haglund ◽  
Mirkó Visontai

International audience We discuss some recent progress on the Monotone Column Permanent (MCP) conjecture. We use a general method for proving that a univariate polynomial has real roots only, namely by showing that a corresponding multivariate polynomial is stable. Recent connections between stability of polynomials and the strong Rayleigh property revealed by Brändén allows for a computationally feasible check of stability for multi-affine polynomials. Using this method we obtain a simpler proof for the $n=3$ case of the MCP conjecture, and a new proof for the $n=4$ case. We also show a multivariate version of the stability of Eulerian polynomials for $n \leq 5$ which arises as a special case of the multivariate MCP conjecture. Nous présentons des développements récents concernant la conjecture Monotone Column Permanent (MCP). Nous utilisons une méthode générale pour prouver qu’un polynôme univarié a uniquement des racines réelles, c’est-à-dire que nous prouvons qu’un polynôme correspondant a plusieurs variables est stable. Les nouveaux liens, établis par Brändén, entre la stabilité des polynômes et la propriété forte de Rayleigh, permettent de vérifier facilement la stabilité de polynômes multi-affines. En utilisant cette méthode nous obtenons une preuve plus simple pour la conjecture MCP pour le cas $n=3$, et la première preuve pour le cas $n=4$. Nous présentons également une version multivariée de stabilité des polynômes d’Euler pour le cas $n \leq 5$, qui apparaît comme un cas spécial de la conjecture MCP multivariée.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Fu Liu

International audience We describe a perturbation method that can be used to compute the multivariate generating function (MGF) of a non-simple polyhedron, and then construct a perturbation that works for any transportation polytope. Applying this perturbation to the family of central transportation polytopes of order $kn \times n$, we obtain formulas for the MGF of the polytope. The formulas we obtain are enumerated by combinatorial objects. A special case of the formulas recovers the results on Birkhoff polytopes given by the author and De Loera and Yoshida. We also recover the formula for the number of maximum vertices of transportation polytopes of order $kn \times n$. Nous décrivons une méthode de perturbation qui peut être utilisée pour calculer la fonction génératrice multivariée (MGF) d'un polyèdre non-simple, et ensuite construire une perturbation qui fonctionne pour tout polytope de transport. Appliquant cette perturbation à la famille des centraux de transport polytopes de l'ordre $kn \times n$, nous obtenons des formules pour le MGF du polytope. Les formules que nous obtenons sont énumérées par les objets combinatoires. Un cas spécial des formules récupère les résultats sur des polytopes de Birkhoff donnés par l'auteur et De Loera et Yoshida. Nous récupérons également la formule pour le nombre de sommets maximum des de transport polytopes d'ordre $kn \times n$.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Markus Kuba ◽  
Alois Panholzer

International audience We study two enumeration problems for $\textit{up-down alternating trees}$, i.e., rooted labelled trees $T$, where the labels $ v_1, v_2, v_3, \ldots$ on every path starting at the root of $T$ satisfy $v_1 < v_2 > v_3 < v_4 > \cdots$. First we consider various tree families of interest in combinatorics (such as unordered, ordered, $d$-ary and Motzkin trees) and study the number $T_n$ of different up-down alternating labelled trees of size $n$. We obtain for all tree families considered an implicit characterization of the exponential generating function $T(z)$ leading to asymptotic results of the coefficients $T_n$ for various tree families. Second we consider the particular family of up-down alternating labelled ordered trees and study the influence of such an alternating labelling to the average shape of the trees by analyzing the parameters $\textit{label of the root node}$, $\textit{degree of the root node}$ and $\textit{depth of a random node}$ in a random tree of size $n$. This leads to exact enumeration results and limiting distribution results. Nous étudions deux problèmes de dénombrement d'$\textit{arbres alternés haut-bas}$ : par définition, ce sont des arbres munis d'une racine et tels que, pour tout chemin partant de la racine, les valeurs $v_1,v_2,v_3,\ldots$ associées aux nœuds du chemin satisfont la chaîne d'inégalités $v_1 < v_2 > v_3 < v_4 > \cdots$. D'une part, nous considérons diverses familles d'arbres intéressantes du point de vue de l'analyse combinatoire (comme les arbres de Motzkin, les arbres non ordonnés, ordonnés et $d$-aires) et nous étudions pour chaque famille le nombre total $T_n$ d'arbres alternés haut-bas de taille $n$. Nous obtenons pour toutes les familles d'arbres considérées une caractérisation implicite de la fonction génératrice exponentielle $T(z)$. Cette caractérisation nous renseigne sur le comportement asymptotique des coefficients $T_n$ de plusieurs familles d'arbres. D'autre part, nous examinons le cas particulier de la famille des arbres ordonnés : nous étudions l'influence de l'étiquetage alterné haut-bas sur l'allure générale de ces arbres en analysant trois paramètres dans un arbre aléatoire (valeur de la racine, degré de la racine et profondeur d'un nœud aléatoire). Nous obtenons alors des résultats en terme de distribution limite, mais aussi de dénombrement exact.


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Alexander Gnedin

International audience For a class of random partitions of an infinite set a de Finetti-type representation is derived, and in one special case a central limit theorem for the number of blocks is shown.


2003 ◽  
Vol 16 (4) ◽  
pp. 311-326 ◽  
Author(s):  
Mykola Bratiychuk ◽  
Andrzej Chydzinski

This paper examines a new class of queueing systems and proves a theorem on the existence of the ergodic distribution of the number of customers in such a system. An ergodic distribution is computed explicitly for the special case of a G/M−M/1 system, where the interarrival distribution does not change and both service distributions are exponential. A numerical example is also given.


2005 ◽  
Vol DMTCS Proceedings vol. AD,... (Proceedings) ◽  
Author(s):  
Frédéric Giroire

International audience We introduce a new class of algorithms to estimate the cardinality of very large multisets using constant memory and doing only one pass on the data. It is based on order statistics rather that on bit patterns in binary representations of numbers. We analyse three families of estimators. They attain a standard error of $\frac{1}{\sqrt{M}}$ using $M$ units of storage, which places them in the same class as the best known algorithms so far. They have a very simple internal loop, which gives them an advantage in term of processing speed. The algorithms are validated on internet traffic traces.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Mirkó Visontai

International audience We investigate a conjecture of Haglund that asserts that certain graph polynomials have only real roots. We prove a multivariate generalization of this conjecture for the special case of threshold graphs. Nous étudions une conjecture de Haglund qui affirme que certaines polynômes des graphes ont uniquement des racines réelles. Nous prouvons une généralisation multivariée de cette conjecture pour le cas particulier des graphes à seuil.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Christopher J. Hillar ◽  
Lionel Levine ◽  
Darren Rhea

International audience We study equations in groups $G$ with unique $m$-th roots for each positive integer $m$. A word equation in two letters is an expression of the form$ w(X,A) = B$, where $w$ is a finite word in the alphabet ${X,A}$. We think of $A,B ∈G$ as fixed coefficients, and $X ∈G$ as the unknown. Certain word equations, such as $XAXAX=B$, have solutions in terms of radicals: $X = A^-1/2(A^1/2BA^1/2)^1/3A^-1/2$, while others such as $X^2 A X = B$ do not. We obtain the first known infinite families of word equations not solvable by radicals, and conjecture a complete classification. To a word w we associate a polynomial $P_w ∈ℤ[x,y]$ in two commuting variables, which factors whenever $w$ is a composition of smaller words. We prove that if $P_w(x^2,y^2)$ has an absolutely irreducible factor in $ℤ[x,y]$, then the equation $w(X,A)=B$ is not solvable in terms of radicals. Nous étudions des équations dans les groupes $G$ avec les $m$-th racines uniques pour chaque nombre entier positif m. Une équation de mot dans deux lettres est une expression de la forme $w(X, A) = B$, où $w$ est un mot fini dans l'alphabet ${X, A}$. Nous pensons $A, B ∈G$ en tant que coefficients fixes, et $X ∈G$ en tant que inconnu. Certaines équations de mot, telles que $XAXAX=B$, ont des solutions en termes de radicaux: $X = A^-1/2(A^1/2BA^1/2)^1/3A^-1/2$, alors que d'autres tel que $X^2 A X = B$ ne font pas. Nous obtenons les familles infinies d'abord connues des équations de mot non solubles par des radicaux, et conjecturons une classification complété. Á un mot $w$ nous associons un polynôme $P_w ∈ℤ[x, y]$ dans deux variables de permutation, qui factorise toutes les fois que $w$ est une composition de plus petits mots. Nous montrons que si $P_w(x^2, y^2)$ a un facteur absolument irréductible dans $ℤ[x, y]$, alors l'équation $w(X, A)=B$ n'est pas soluble en termes de radicaux.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Sergey Kitaev ◽  
Jeffrey Remmel

International audience A poset is said to be (2+2)-free if it does not contain an induced subposet that is isomorphic to 2+2, the union of two disjoint 2-element chains. In a recent paper, Bousquet-Mélou et al. found, using so called ascent sequences, the generating function for the number of (2+2)-free posets: $P(t)=∑_n≥ 0 ∏_i=1^n ( 1-(1-t)^i)$. We extend this result by finding the generating function for (2+2)-free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. We also show that in a special case when only minimal elements are of interest, our rather involved generating function can be rewritten in the form $P(t,z)=∑_n,k ≥0 p_n,k t^n z^k = 1+ ∑_n ≥0\frac{zt}{(1-zt)^n+1}∏_i=1^n (1-(1-t)^i)$ where $p_n,k$ equals the number of (2+2)-free posets of size $n$ with $k$ minimal elements. Un poset sera dit (2+2)-libre s'il ne contient aucun sous-poset isomorphe à 2+2, l'union disjointe de deux chaînes à deux éléments. Dans un article récent, Bousquet-Mélou et al. ont trouvé, à l'aide de "suites de montées'', la fonction génératrice des nombres de posets (2+2)-libres: c'est $P(t)=∑_n≥ 0 ∏_i=1^n ( 1-(1-t)^i)$. Nous étendons ce résultat en trouvant la fonction génératrice des posets (\textrm2+2)-libres rendant compte de quatre statistiques, dont le nombre d'éléments minimaux du poset. Nous montrons aussi que lorsqu'on ne s'intéresse qu'au nombre d'éléments minimaux, notre fonction génératrice assez compliquée peut être simplifiée en$P(t,z)=∑_n,k ≥0 p_n,k t^n z^k = 1+ ∑_n ≥0\frac{zt}{(1-zt)^n+1}∏_i=1^n (1-(1-t)^i)$, où $p_n,k$ est le nombre de posets (2+2)-libres de taille $n$ avec $k$ éléments minimaux.


Sign in / Sign up

Export Citation Format

Share Document