scholarly journals On the Monotone Column Permanent conjecture

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
James Haglund ◽  
Mirkó Visontai

International audience We discuss some recent progress on the Monotone Column Permanent (MCP) conjecture. We use a general method for proving that a univariate polynomial has real roots only, namely by showing that a corresponding multivariate polynomial is stable. Recent connections between stability of polynomials and the strong Rayleigh property revealed by Brändén allows for a computationally feasible check of stability for multi-affine polynomials. Using this method we obtain a simpler proof for the $n=3$ case of the MCP conjecture, and a new proof for the $n=4$ case. We also show a multivariate version of the stability of Eulerian polynomials for $n \leq 5$ which arises as a special case of the multivariate MCP conjecture. Nous présentons des développements récents concernant la conjecture Monotone Column Permanent (MCP). Nous utilisons une méthode générale pour prouver qu’un polynôme univarié a uniquement des racines réelles, c’est-à-dire que nous prouvons qu’un polynôme correspondant a plusieurs variables est stable. Les nouveaux liens, établis par Brändén, entre la stabilité des polynômes et la propriété forte de Rayleigh, permettent de vérifier facilement la stabilité de polynômes multi-affines. En utilisant cette méthode nous obtenons une preuve plus simple pour la conjecture MCP pour le cas $n=3$, et la première preuve pour le cas $n=4$. Nous présentons également une version multivariée de stabilité des polynômes d’Euler pour le cas $n \leq 5$, qui apparaît comme un cas spécial de la conjecture MCP multivariée.

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Mirkó Visontai

International audience We investigate a conjecture of Haglund that asserts that certain graph polynomials have only real roots. We prove a multivariate generalization of this conjecture for the special case of threshold graphs. Nous étudions une conjecture de Haglund qui affirme que certaines polynômes des graphes ont uniquement des racines réelles. Nous prouvons une généralisation multivariée de cette conjecture pour le cas particulier des graphes à seuil.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Michael Schlosser ◽  
Meesue Yoo

International audience We derive combinatorial identities for variables satisfying specific sets of commutation relations. The identities thus obtained extend corresponding ones for $q$-commuting variables $x$ and $y$ satisfying $yx=qxy$. In particular, we obtain weight-dependent binomial theorems, functional equations for generalized exponential functions, we propose a derivative of noncommuting variables, and finally utilize one of the considered weight functions to extend rook theory. This leads us to an extension of the $q$-Stirling numbers of the second kind, and of the $q$-Lah numbers. Nous obtenons des identités combinatoires pour des variables satisfaisant des ensembles spécifiques de relations de commutation. Ces identités ainsi obtenues généralisent leurs analogues pour des variables $q$-commutantes $x$ et $y$ satisfaisant $yx=qxy$. En particulier, nous obtenons des théorèmes binomiaux dépendant du poids, des équations fonctionnelles pour les fonctions exponentielles généralisées, nous proposons une dérivée des variables non-commutatives, et finalement nous utilisons l’une des fonctions de poids considérées pour étendre la théorie des tours. Nous en déduisons une généralisation des $q$-nombres de Stirling de seconde espèce et des $q$-nombres de Lah.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Mirkó Visontai ◽  
Nathan Williams

International audience We give a multivariate analog of the type B Eulerian polynomial introduced by Brenti. We prove that this multivariate polynomial is stable generalizing Brenti's result that every root of the type B Eulerian polynomial is real. Our proof combines a refinement of the descent statistic for signed permutations with the notion of real stability—a generalization of real-rootedness to polynomials in multiple variables. The key is that our refined multivariate Eulerian polynomials satisfy a recurrence given by a stability-preserving linear operator. Nous prèsentons un raffinement multivariè d'un polynôme eulèrien de type B dèfini par Brenti. En prouvant que ce polynôme est stable nous gènèralisons un rèsultat de Brenti selon laquel chaque racine du polynôme eulèrien de type B est rèelle. Notre preuve combine un raffinement de la statistique des descentes pour les permutations signèes avec la stabilitè—une gènèralisation de la propriètè d'avoir uniquement des racines rèelles aux polynômes en plusieurs variables. La connexion est que nos polynômes eulèriens raffinès satisfont une rècurrence donnèe par un opèrateur linèaire qui prèserve la stabilitè.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Philippe Duchon

International audience We present new conjectures on the distribution of link patterns for fully-packed loop (FPL) configurations that are invariant, or almost invariant, under a quarter turn rotation, extending previous conjectures of Razumov and Stroganov and of de Gier. We prove a special case, showing that the link pattern that is conjectured to be the rarest does have the prescribed probability. As a byproduct, we get a formula for the enumeration of a new class of quasi-symmetry of plane partitions. Nous présentons de nouvelles conjectures portant sur la distribution des schémas de couplage des configurations de boucles compactes (FPL) invariantes, ou presque invariantes, par une rotation d'un quart de tour. Ces nouvelles conjectures étendent des conjectures précédentes dues à Razumov et Stroganov et à de Gier. Dans chaque cas, nous prouvons un cas particulier, en démontrant que le schéma de couplage conjecturé pour être le plus rare a effectivement la probabilité prédite. Nous obtenons également une formule pour l'énumération d'une nouvelle classe de quasi-symétrie de partitions planes.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Frédéric Chapoton ◽  
Gregory Chatel ◽  
Viviane Pons

International audience We use a recently introduced combinatorial object, the $\textit{interval-poset}$, to describe two bijections on intervals of the Tamari lattice. Both bijections give a combinatorial proof of some previously known results. The first one is an inner bijection between Tamari intervals that exchanges the $\textit{initial rise}$ and $\textit{lower contacts}$ statistics. Those were introduced by Bousquet-Mélou, Fusy, and Préville-Ratelle who proved they were symmetrically distributed but had no combinatorial explanation. The second bijection sends a Tamari interval to a closed flow of an ordered forest. These combinatorial objects were studied by Chapoton in the context of the Pre-Lie operad and the connection with the Tamari order was still unclear. Nous utilisons les $\textit{intervalles-posets}$, très récemment introduits, pour décrire deux bijections sur les intervalles du treillis de Tamari. Nous obtenons ainsi des preuves combinatoires de précédents résultats. La première bijection est une opération interne sur les intervalles qui échange les statistiques de la $\textit{montée initiale}$ et du $\textit{nombre de contacts}$. Ces dernières ont été introduites par Bousquet-Mélou, Fusy et Préville-Ratelle qui ont prouvé qu’elles étaient symétriquement distribuées sans pour autant proposer d’explication combinatoire. La seconde bijection fait le lien avec un objet étudié par Chapoton dans le cadre de l’opérade Pré-Lie : les flots sur les forêts ordonnées. Le lien avec l’ordre de Tamari avait déjà été remarqué sans pour autant être expliqué.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Carla D. Savage ◽  
Mirkó Visontai

International audience We give an intrinsic proof of a conjecture of Brenti that all the roots of the Eulerian polynomial of type $D$ are real and a proof of a conjecture of Dilks, Petersen, and Stembridge that all the roots of the affine Eulerian polynomial of type $B$ are real, as well. Nous prouvons, de façon intrinsèque, une conjecture de Brenti affirmant que toutes les racines du polynôme eulérien de type $D$ sont réelles. Nous prouvons également une conjecture de Dilks, Petersen, et Stembridge que toutes les racines du polynôme eulérien affine de type $B$ sont réelles.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Jonathan M. Borwein ◽  
Dirk Nuyens ◽  
Armin Straub ◽  
James Wan

International audience We study the expected distance of a two-dimensional walk in the plane with unit steps in random directions. A series evaluation and recursions are obtained making it possible to explicitly formulate this distance for small number of steps. Formulae for all the moments of a 2-step and a 3-step walk are given, and an expression is conjectured for the 4-step walk. The paper makes use of the combinatorical features exhibited by the even moments which, for instance, lead to analytic continuations of the underlying integral. Nous étudions la distance espérée d'une marche aléatoire à deux dimensions et à pas unité dans des directions aléatoires. Nous obtenons une évaluation des séries et des récurrences qui permettent de formuler explicitement cette distance pour un petit nombre de pas. Nous donnons des formules pour tous les moments d'une marche aléatoire à 2 et à 3 pas et nous formulons une conjecture pour l'expression d'une marche à 4 pas. Pour les moments pairs, nous utilisons des relations combinatoires qui, par exemple, permettent le prolongement analytique des intégrales.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Fu Liu

International audience We describe a perturbation method that can be used to compute the multivariate generating function (MGF) of a non-simple polyhedron, and then construct a perturbation that works for any transportation polytope. Applying this perturbation to the family of central transportation polytopes of order $kn \times n$, we obtain formulas for the MGF of the polytope. The formulas we obtain are enumerated by combinatorial objects. A special case of the formulas recovers the results on Birkhoff polytopes given by the author and De Loera and Yoshida. We also recover the formula for the number of maximum vertices of transportation polytopes of order $kn \times n$. Nous décrivons une méthode de perturbation qui peut être utilisée pour calculer la fonction génératrice multivariée (MGF) d'un polyèdre non-simple, et ensuite construire une perturbation qui fonctionne pour tout polytope de transport. Appliquant cette perturbation à la famille des centraux de transport polytopes de l'ordre $kn \times n$, nous obtenons des formules pour le MGF du polytope. Les formules que nous obtenons sont énumérées par les objets combinatoires. Un cas spécial des formules récupère les résultats sur des polytopes de Birkhoff donnés par l'auteur et De Loera et Yoshida. Nous récupérons également la formule pour le nombre de sommets maximum des de transport polytopes d'ordre $kn \times n$.


2020 ◽  
Vol 21 (8) ◽  
pp. 741-747
Author(s):  
Liguang Zhang ◽  
Yanan Shen ◽  
Wenjing Lu ◽  
Lengqiu Guo ◽  
Min Xiang ◽  
...  

Background: Although the stability of proteins is of significance to maintain protein function for therapeutical applications, this remains a challenge. Herein, a general method of preserving protein stability and function was developed using gelatin films. Method: Enzymes immobilized onto films composed of gelatin and Ethylene Glycol (EG) were developed to study their ability to stabilize proteins. As a model functional protein, β-glucosidase was selected. The tensile properties, microstructure, and crystallization behavior of the gelatin films were assessed. Result: Our results indicated that film configurations can preserve the activity of β-glucosidase under rigorous conditions (75% relative humidity and 37°C for 47 days). In both control films and films containing 1.8 % β-glucosidase, tensile strength increased with increased EG content, whilst the elongation at break increased initially, then decreased over time. The presence of β-glucosidase had a negligible influence on tensile strength and elongation at break. Scanning electron-microscopy (SEM) revealed that with increasing EG content or decreasing enzyme concentrations, a denser microstructure was observed. Conclusion: In conclusion, the dry film is a promising candidate to maintain protein stabilization and handling. The configuration is convenient and cheap, and thus applicable to protein storage and transportation processes in the future.


Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter is concerned with closable and closed operators in Hilbert spaces, especially with the special classes of symmetric, J-symmetric, accretive and sectorial operators. The Stone–von Neumann theory of extensions of symmetric operators is treated as a special case of results for compatible adjoint pairs of closed operators. Also discussed in detail is the stability of closedness and self-adjointness under perturbations. The abstract results are applied to operators defined by second-order differential expressions, and Sims’ generalization of the Weyl limit-point, limit-circle characterization for symmetric expressions to J-symmetric expressions is proved.


Sign in / Sign up

Export Citation Format

Share Document