scholarly journals Kazhdan-Lusztig polynomials of boolean elements

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Pietro Mongelli

International audience We give closed combinatorial product formulas for Kazhdan–Lusztig poynomials and their parabolic analogue of type $q$ in the case of boolean elements, introduced in [M. Marietti, Boolean elements in Kazhdan–Lusztig theory, J. Algebra 295 (2006)], in Coxeter groups whose Coxeter graph is a tree. Such formulas involve Catalan numbers and use a combinatorial interpretation of the Coxeter graph of the group. In the case of classical Weyl groups, this combinatorial interpretation can be restated in terms of statistics of (signed) permutations. As an application of the formulas, we compute the intersection homology Poincaré polynomials of the Schubert varieties of boolean elements. Nous donnons des formules combinatoires pour les polynômes de Kazhdan-Lusztig et leurs analogues paraboliques de type $q$ pour les éléments booléens, introduite dans [M. Marietti, Boolean elements in Kazhdan–Lusztig theory, J. Algebra 295 (2006)], dans les groupes de Coxeter dont le graphe de Coxeter est un arbre. Ces formules utilisent les nombres de Catalan et une interprétation combinatoire des graphes du groupe de Coxeter. Dans le cas des groupes de Weyl classiques, cette interprétation combinatoire peut être reformulée en termes de statistiques de permutations avec signe. Avec ces formules, on peut calculer le polynôme de l’intersection homologie de Poincaré pour la variété de Schubert de éléments booléens.

2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Brant Jones

International audience The Kazhdan-Lusztig polynomials for finite Weyl groups arise in representation theory as well as the geometry of Schubert varieties. It was proved very soon after their introduction that they have nonnegative integer coefficients, but no simple all positive interpretation for them is known in general. Deodhar has given a framework, which generally involves recursion, to express the Kazhdan-Lusztig polynomials in a very attractive form. We use a new kind of pattern-avoidance that can be defined for general Coxeter groups to characterize when Deodhar's algorithm yields a non-recursive combinatorial formula for Kazhdan-Lusztig polynomials $P_{x,w}(q)$ of finite Weyl groups. This generalizes results of Billey-Warrington which identified the $321$-hexagon-avoiding permutations, and Fan-Green which identified the fully-tight Coxeter groups. We also show that the leading coefficient known as $\mu (x,w)$ for these Kazhdan―Lusztig polynomials is always either $0$ or $1$. Finally, we generalize the simple combinatorial formula for the Kazhdan―Lusztig polynomials of the $321$-hexagon-avoiding permutations to the case when $w$ is hexagon avoiding and maximally clustered. Les polynômes de Kazhdan-Lusztig $P_{x,w}(q)$ des groupes de Weyl finis apparaissent en théorie des représentations, ainsi qu’en géométrie des variétés de Schubert. Il a été démontré peu après leur introduction qu’ils avaient des coefficients entiers positifs, mais on ne connaît toujours pas d’interprétation combinatoire simple de cette propriété dans le cas général. Deodhar a proposé un cadre donnant un algorithme, en général récursif, calculant des formules attractives pour les polynômes de Kazhdan-Lusztig. Billey-Warrington ont démontré que cet algorithme est non récursif lorsque$w$ évite les hexagones et les $321$ et qu’il donne des formules combinatoires simples. Nous introduisons une notion d’évitement de schémas dansles groupes de Coxeter quelconques nous permettant de généraliser les résultats de Billey-Warrington à tout groupe de Weyl fini. Nous montrons que le coefficient de tête $\mu (x,w)$ de ces polynômes de Kazhdan-Lusztig est toujours $0$ ou $1$. Cela généralise aussi des résultats de Fan-Greenqui identifient les groupes de Coxeter complètement serrés. Enfin, en type $A$, nous obtenons une classe plus large de permutations évitant la récursion.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Gaku Liu

International audience In this extended abstract we consider mixed volumes of combinations of hypersimplices. These numbers, called mixed Eulerian numbers, were first considered by A. Postnikov and were shown to satisfy many properties related to Eulerian numbers, Catalan numbers, binomial coefficients, etc. We give a general combinatorial interpretation for mixed Eulerian numbers and prove the above properties combinatorially. In particular, we show that each mixed Eulerian number enumerates a certain set of permutations in $S_n$. We also prove several new properties of mixed Eulerian numbers using our methods. Finally, we consider a type $B$ analogue of mixed Eulerian numbers and give an analogous combinatorial interpretation for these numbers. Dans ce résumé étendu nous considérons les volumes mixtes de combinaisons d’hyper-simplexes. Ces nombres, appelés les nombres Eulériens mixtes, ont été pour la première fois étudiés par A. Postnikov, et il a été montré qu’ils satisfont à de nombreuses propriétés reliées aux nombres Eulériens, au nombres de Catalan, aux coefficients binomiaux, etc. Nous donnons une interprétation combinatoire générale des nombres Eulériens mixtes, et nous prouvons combinatoirement les propriétés mentionnées ci-dessus. En particulier, nous montrons que chaque nombre Eulérien mixte compte les éléments d’un certain sous-ensemble de l’ensemble des permutations $S_n$. Nous établissons également plusieurs nouvelles propriétés des nombres Eulériens mixtes grâce à notre méthode. Pour finir, nous introduisons une généralisation en type $B$ des nombres Eulériens mixtes, et nous en donnons une interprétation combinatoire analogue.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Eli Bagno ◽  
Riccardo Biagioli ◽  
Mordechai Novick

International audience The depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length. La statistique profondeur a été introduite par Petersen et Tenner pour tout groupe de Coxeter $W$. Elle est définie pour tout $w \in W$ à partir de ses factorisations en produit de réflexions (non nécessairement simples). Pour le type $B$, nous introduisons un algorithme calculant la profondeur, et donnant une formule explicite pour cette statistique. On utilise par ailleurs cet algorithme pour caractériser tous les éléments ayant une profondeur égale à leur longueur. Ces derniers s’avèrent être les éléments pleinement commutatifs “hauts-et-bas” introduits par Stembridge. Nous donnons enfin une caractérisation des éléments dont la longueur absolue, la profondeur et la longueur coïncident.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Saúl A. Blanco

International audience We define a poset using the shortest paths in the Bruhat graph of a finite Coxeter group $W$ from the identity to the longest word in $W, w_0$. We show that this poset is the union of Boolean posets of rank absolute length of $w_0$; that is, any shortest path labeled by reflections $t_1,\ldots,t_m$ is fully commutative. This allows us to give a combinatorial interpretation to the lowest-degree terms in the complete $\textbf{cd}$-index of $W$. Nous définissons un poset en utilisant le plus court chemin entre l'identité et le plus long mot de $W, w_0$, dans le graph de Bruhat du groupe finie Coxeter, $W$. Nous prouvons que ce poset est l'union de posets Boolean du même rang que la longueur absolute de $w_0$; ça signifie que tous les plus courts chemins, étiquetés par réflexions $t_1,\ldots, t_m$ sont totalement commutatives. Ça nous permet de donner une interprétation combinatoire aux termes avec le moindre grade dans le $\textbf{cd}$-index complet de $W$.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Fabrizio Caselli ◽  
Roberta Fulci

International audience A finite subgroup $G$ of $GL(n,\mathbb{C})$ is involutory if the sum of the dimensions of its irreducible complex representations is given by the number of absolute involutions in the group, i.e. elements $g \in G$ such that $g \bar{g}=1$, where the bar denotes complex conjugation. A uniform combinatorial model is constructed for all non-exceptional irreducible complex reflection groups which are involutory including, in particular, all infinite families of finite irreducible Coxeter groups. If $G$ is a classical Weyl group this result is much refined in a way which is compatible with the Robinson-Schensted correspondence on involutions. Un sous-groupe fini $G$ de GL(n,ℂ) est dit involutoire si la somme des dimensions de ses représentations irréductibles complexes est donné par le nombre de involutions absolues dans le groupe, c'est-a-dire le nombre de éléments $g \in G$ tels que $g \bar{g}=1$, où le bar dénote la conjugaison complexe. Un modèle combinatoire uniforme est construit pour tous les groupes de réflexions complexes irréductibles qui sont involutoires, en comprenant, toutes les familles de groupes de Coxeter finis irréductibles. Si $G$ est un groupe de Weyl ce résultat peut se raffiner d'une manière compatible avec la correspondance de Robinson-Schensted sur les involutions.


10.37236/6741 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Sara C. Billey ◽  
Matjaž Konvalinka ◽  
T. Kyle Petersen ◽  
William Slofstra ◽  
Bridget E. Tenner

Parabolic subgroups $W_I$ of Coxeter systems $(W,S)$, as well as their ordinary and double quotients $W / W_I$ and $W_I \backslash W / W_J$, appear in many contexts in combinatorics and Lie theory, including the geometry and topology of generalized flag varieties and the symmetry groups of regular polytopes. The set of ordinary cosets $w W_I$, for $I \subseteq S$, forms the Coxeter complex of $W$, and is well-studied. In this article we look at a less studied object: the set of all double cosets $W_I w W_J$ for $I, J \subseteq S$. Double cosets are not uniquely presented by triples $(I,w,J)$. We describe what we call the lex-minimal presentation, and prove that there exists a unique such object for each double coset. Lex-minimal presentations are then used to enumerate double cosets via a finite automaton depending on the Coxeter graph for $(W,S)$. As an example, we present a formula for the number of parabolic double cosets with a fixed minimal element when $W$ is the symmetric group $S_n$ (in this case, parabolic subgroups are also known as Young subgroups). Our formula is almost always linear time computable in $n$, and we show how it can be generalized to any Coxeter group with little additional work. We spell out formulas for all finite and affine Weyl groups in the case that $w$ is the identity element.


10.37236/1871 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
John R. Stembridge

It is a well-known theorem of Deodhar that the Bruhat ordering of a Coxeter group is the conjunction of its projections onto quotients by maximal parabolic subgroups. Similarly, the Bruhat order is also the conjunction of a larger number of simpler quotients obtained by projecting onto two-sided (i.e., "double") quotients by pairs of maximal parabolic subgroups. Each one-sided quotient may be represented as an orbit in the reflection representation, and each double quotient corresponds to the portion of an orbit on the positive side of certain hyperplanes. In some cases, these orbit representations are "tight" in the sense that the root system induces an ordering on the orbit that yields effective coordinates for the Bruhat order, and hence also provides upper bounds for the order dimension. In this paper, we (1) provide a general characterization of tightness for one-sided quotients, (2) classify all tight one-sided quotients of finite Coxeter groups, and (3) classify all tight double quotients of affine Weyl groups.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Cesar Ceballos ◽  
Jean-Philippe Labbé ◽  
Christian Stump

International audience We present a family of simplicial complexes called \emphmulti-cluster complexes. These complexes generalize the concept of cluster complexes, and extend the notion of multi-associahedra of types ${A}$ and ${B}$ to general finite Coxeter groups. We study combinatorial and geometric properties of these objects and, in particular, provide a simple combinatorial description of the compatibility relation among the set of almost positive roots in the cluster complex. Nous présentons une famille de complexes simpliciaux appelés \emphcomplexes des multi-amas. Ces complexes généralisent le concept de complexes des amas et étendent la notion de multi-associaèdre de type ${A}$ et ${B}$ aux groupes de Coxeter finis. Nous étudions des propriétés combinatoires et géométriques de ces objets et, en particulier nous fournissons une description combinatoire simple de la relation de compatibilité sur l'ensemble des racines presque positives du complexe des amas.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Francois Viard

International audience We construct a poset from a simple acyclic digraph together with a valuation on its vertices, and we compute the values of its Möbius function. We show that the weak order on Coxeter groups $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, and the flag weak order on the wreath product &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduced by Adin, Brenti and Roichman (2012), are special instances of our construction. We conclude by briefly explaining how to use our work to define quasi-symmetric functions, with a special emphasis on the $A$<sub>$n-1$</sub> case, in which case we obtain the classical Stanley symmetric function. On construit une famille d’ensembles ordonnés à partir d’un graphe orienté, simple et acyclique munit d’une valuation sur ses sommets, puis on calcule les valeurs de leur fonction de Möbius respective. On montre que l’ordre faible sur les groupes de Coxeter $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, ainsi qu’une variante de l’ordre faible sur les produits en couronne &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduit par Adin, Brenti et Roichman (2012), sont des cas particuliers de cette construction. On conclura en expliquant brièvement comment ce travail peut-être utilisé pour définir des fonction quasi-symétriques, en insistant sur l’exemple de l’ordre faible sur $A$<sub>$n-1$</sub> où l’on obtient les séries de Stanley classiques.


10.37236/9037 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Hiranya Kishore Dey ◽  
Sivaramakrishnan Sivasubramanian

The Eulerian polynomial $A_n(t)$ enumerating descents in $\mathfrak{S}_n$ is known to be gamma positive for all $n$. When enumeration is done over the type B and type D Coxeter groups, the type B and type D Eulerian polynomials are also known to be gamma positive for all $n$. We consider $A_n^+(t)$ and $A_n^-(t)$, the polynomials which enumerate descents in the alternating group $\mathcal{A}_n$ and in $\mathfrak{S}_n - \mathcal{A}_n$ respectively.  We show the following results about $A_n^+(t)$ and $A_n^-(t)$: both polynomials are gamma positive iff $n \equiv 0,1$ (mod 4). When $n \equiv 2,3$ (mod 4), both polynomials are not palindromic. When $n \equiv 2$ (mod 4), we show that {\sl two} gamma positive summands add up to give $A_n^+(t)$ and $A_n^-(t)$. When $n \equiv 3$ (mod 4), we show that {\sl three} gamma positive summands add up to give both $A_n^+(t)$ and $A_n^-(t)$.  We show similar gamma positivity results about the descent based type B and type D Eulerian polynomials when enumeration is done over the positive elements in the respective Coxeter groups. We also show that the polynomials considered in this work are unimodal.


Sign in / Sign up

Export Citation Format

Share Document