scholarly journals Continued fraction expansions for q-tangent and q-cotangent functions

2010 ◽  
Vol Vol. 12 no. 2 ◽  
Author(s):  
Helmut Prodinger

International audience For 3 different versions of q-tangent resp. q-cotangent functions, we compute the continued fraction expansion explicitly, by guessing the relative quantities and proving the recursive relation afterwards. It is likely that these are the only instances with a ''nice'' expansion. Additional formulae of a similar type are also provided.

2009 ◽  
Vol 29 (5) ◽  
pp. 1451-1478 ◽  
Author(s):  
FRANCESCO CELLAROSI

AbstractWe prove the existence of the limiting distribution for the sequence of denominators generated by continued fraction expansions with even partial quotients, which were introduced by Schweiger [Continued fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg4 (1982), 59–70; On the approximation by continues fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg1–2 (1984), 105–114] and studied also by Kraaikamp and Lopes [The theta group and the continued fraction expansion with even partial quotients. Geom. Dedicata59(3) (1996), 293–333]. Our main result is proven following the strategy used by Sinai and Ulcigrai [Renewal-type limit theorem for the Gauss map and continued fractions. Ergod. Th. & Dynam. Sys.28 (2008), 643–655] in their proof of a similar renewal-type theorem for Euclidean continued fraction expansions and the Gauss map. The main steps in our proof are the construction of a natural extension of a Gauss-like map and the proof of mixing of a related special flow.


2009 ◽  
Vol 146 (1) ◽  
pp. 207-212 ◽  
Author(s):  
JUN WU ◽  
JIAN XU

AbstractLet [a1(x), a2(x), . . .] be the continued fraction expansion of x ∈ [0,1). Write Tn(x)=max{ak(x):1 ≤ k ≤ n}. Philipp [6] proved that Okano [5] showed that for any k ≥ 2, there exists x ∈ [0, 1) such that T(x)=1/log k. In this paper we show that, for any α ≥ 0, the set is of Hausdorff dimension 1.


Author(s):  
JINHUA CHANG ◽  
HAIBO CHEN

AbstractLet 0 ⩽ α ⩽ ∞ and ψ be a positive function defined on (0, ∞). In this paper, we will study the level sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) which are related respectively to the sequence of the largest digits among the first n partial quotients {Ln(x)}n≥1, the increasing sequence of the largest partial quotients {Bn(x)}n⩾1 and the sequence of successive occurrences of the largest partial quotients {Tn(x)}n⩾1 in the continued fraction expansion of x ∈ [0,1) ∩ ℚc. Under suitable assumptions of the function ψ, we will prove that the sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) are all of full Hausdorff dimensions for any 0 ⩽ α ⩽ ∞. These results complement some limit theorems given by J. Galambos [4] and D. Barbolosi and C. Faivre [1].


2015 ◽  
Vol 23 (2) ◽  
pp. 147-160
Author(s):  
Dan Lascu ◽  
George Cîrlig

Abstract We introduced a new continued fraction expansions in our previous paper. For these expansions, we show the Brodén-Borel-Lévy type formula. Furthermore, we compute the transition probability function from this and the symbolic dynamical system of the natural number with the unilateral shift.


1983 ◽  
Vol Volume 6 ◽  
Author(s):  
K Ramachandra

International audience The results given in these papers continue the theme developed in part I of this series. In Part III we prove $M(\frac{1}{2})>\!\!\!>_k (\log H_0/q_n)^{k^2}$, where $p_m/q_m$ is the $m$th convergent of the continued fraction expansion of $k$, and $n$ is the unique integer such that $q_nq_{n+1}\geq \log\log H_0 > q_nq_{n-1}$. Section 4 of part III discusses lower bounds of mean values of Titchmarsh series.


2021 ◽  
Author(s):  
philip olivier

<div> <div> <div> <p>This paper is motivated by the need in certain engineering contexts to construct approximations for irrational functions in the complex variable z. The main mathematical tool that will be used is a special continued fraction expansion that cause the rational approximant to collocate the irrational function at specific important values of z. This paper introduces two theorems that facilitate the construction of the rational approxima- tion. </p> </div> </div> </div>


Author(s):  
Wieb Bosma ◽  
Cor Kraaikamp

AbstractAmong all possible semiregular continued fraction expansions of an irrational number the one with the best approximation properties, in a well-defined and natural sense, is determined. Some properties of this so called optimal continued fraction expansion are described.


2021 ◽  
Author(s):  
philip olivier

<div> <div> <div> <p>This paper is motivated by the need in certain engineering contexts to construct approximations for irrational functions in the complex variable z. The main mathematical tool that will be used is a special continued fraction expansion that cause the rational approximant to collocate the irrational function at specific important values of z. This paper introduces two theorems that facilitate the construction of the rational approxima- tion. </p> </div> </div> </div>


2012 ◽  
Vol 93 (1-2) ◽  
pp. 53-76
Author(s):  
K. H. F. CHENG ◽  
R. K. GUY ◽  
R. SCHEIDLER ◽  
H. C. WILLIAMS

AbstractIt is well known that the regular continued fraction expansion of a quadratic irrational is symmetric about its centre; we refer to this symmetry as horizontal. However, an additional vertical symmetry is exhibited by the continued fraction expansions arising from a family of quadratics known as Schinzel sleepers. This paper provides a method for generating every Schinzel sleeper and investigates their period lengths as well as both their horizontal and vertical symmetries.


2015 ◽  
Vol 11 (08) ◽  
pp. 2369-2380
Author(s):  
Zhen-Liang Zhang

In this paper, we study some exceptional sets of points whose partial quotients in their Sylvester continued fraction expansions obey some restrictions. More precisely, for α ≥ 1 we prove that the Hausdorff dimension of the set [Formula: see text] is one. In addition, we find that the points whose partial quotients in their Sylvester continued fraction expansions obey some property of divisibility have the same Engel continued fraction expansion and Sylvester continued fraction expansion. And we establish that the set of points whose Engel continued fraction expansion and Sylvester continued fraction expansion coincide is uncountable.


Sign in / Sign up

Export Citation Format

Share Document