scholarly journals On the metrical theory of a non-regular continued fraction expansion

2015 ◽  
Vol 23 (2) ◽  
pp. 147-160
Author(s):  
Dan Lascu ◽  
George Cîrlig

Abstract We introduced a new continued fraction expansions in our previous paper. For these expansions, we show the Brodén-Borel-Lévy type formula. Furthermore, we compute the transition probability function from this and the symbolic dynamical system of the natural number with the unilateral shift.

2020 ◽  
Vol 121 (1) ◽  
pp. 1-34 ◽  
Author(s):  
Dawid Czapla ◽  
Katarzyna Horbacz ◽  
Hanna Wojewódka-Ściążko

We propose certain conditions implying the functional law of the iterated logarithm (the Strassen invariance principle) for some general class of non-stationary Markov–Feller chains. This class may be briefly specified by the following two properties: firstly, the transition operator of the chain under consideration enjoys a non-linear Lyapunov-type condition, and secondly, there exists an appropriate Markovian coupling whose transition probability function can be decomposed into two parts, one of which is contractive and dominant in some sense. Our criterion may serve as a useful tool in verifying the functional law of the iterated logarithm for certain random dynamical systems, developed e.g. in biology and population dynamics. In the final part of the paper we present an example application of our main theorem to a mathematical model describing stochastic dynamics of gene expression.


2009 ◽  
Vol 29 (5) ◽  
pp. 1451-1478 ◽  
Author(s):  
FRANCESCO CELLAROSI

AbstractWe prove the existence of the limiting distribution for the sequence of denominators generated by continued fraction expansions with even partial quotients, which were introduced by Schweiger [Continued fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg4 (1982), 59–70; On the approximation by continues fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg1–2 (1984), 105–114] and studied also by Kraaikamp and Lopes [The theta group and the continued fraction expansion with even partial quotients. Geom. Dedicata59(3) (1996), 293–333]. Our main result is proven following the strategy used by Sinai and Ulcigrai [Renewal-type limit theorem for the Gauss map and continued fractions. Ergod. Th. & Dynam. Sys.28 (2008), 643–655] in their proof of a similar renewal-type theorem for Euclidean continued fraction expansions and the Gauss map. The main steps in our proof are the construction of a natural extension of a Gauss-like map and the proof of mixing of a related special flow.


2009 ◽  
Vol 146 (1) ◽  
pp. 207-212 ◽  
Author(s):  
JUN WU ◽  
JIAN XU

AbstractLet [a1(x), a2(x), . . .] be the continued fraction expansion of x ∈ [0,1). Write Tn(x)=max{ak(x):1 ≤ k ≤ n}. Philipp [6] proved that Okano [5] showed that for any k ≥ 2, there exists x ∈ [0, 1) such that T(x)=1/log k. In this paper we show that, for any α ≥ 0, the set is of Hausdorff dimension 1.


Author(s):  
JINHUA CHANG ◽  
HAIBO CHEN

AbstractLet 0 ⩽ α ⩽ ∞ and ψ be a positive function defined on (0, ∞). In this paper, we will study the level sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) which are related respectively to the sequence of the largest digits among the first n partial quotients {Ln(x)}n≥1, the increasing sequence of the largest partial quotients {Bn(x)}n⩾1 and the sequence of successive occurrences of the largest partial quotients {Tn(x)}n⩾1 in the continued fraction expansion of x ∈ [0,1) ∩ ℚc. Under suitable assumptions of the function ψ, we will prove that the sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) are all of full Hausdorff dimensions for any 0 ⩽ α ⩽ ∞. These results complement some limit theorems given by J. Galambos [4] and D. Barbolosi and C. Faivre [1].


2017 ◽  
Vol 23 (3) ◽  
Author(s):  
Alexander Egorov ◽  
Victor Malyutin

AbstractIn this work, a new numerical method to calculate the characteristics of the solution to stochastic differential equations is presented. This method is based on the Fokker–Planck equation for the transition probability function and the representation of the transition probability function by means of eigenfunctions of the Fokker–Planck operator. The results of the numerical experiments are presented.


1975 ◽  
Vol 7 (2) ◽  
pp. 349-382 ◽  
Author(s):  
Richard J. Kryscio ◽  
Norman C. Severo

A right-shift process is a Markov process with multidimensional finite state space on which the infinitesimal transition movement is a shifting of one unit from one coordinate to some other to its right. A multidimensional right-shift process consists of v ≧ 1 concurrent and dependent right-shift processes. In this paper applications of multidimensional right-shift processes to some well-known examples from epidemic theory, queueing theory and the Beetle probblem due to Lucien LeCam are discussed. A transformation which orders the Kolmogorov forward equations into a triangular array is provided and some computational procedures for solving the resulting system of equations are presented. One of these procedures is concerned with the problem of evaluating a given transition probability function rather than obtaining the solution to the complete system of forward equations. This particular procedure is applied to the problem of estimating the parameters of a multidimensional right-shift process which is observed at only a finite number of fixed timepoints.


2010 ◽  
Vol Vol. 12 no. 2 ◽  
Author(s):  
Helmut Prodinger

International audience For 3 different versions of q-tangent resp. q-cotangent functions, we compute the continued fraction expansion explicitly, by guessing the relative quantities and proving the recursive relation afterwards. It is likely that these are the only instances with a ''nice'' expansion. Additional formulae of a similar type are also provided.


2021 ◽  
Author(s):  
philip olivier

<div> <div> <div> <p>This paper is motivated by the need in certain engineering contexts to construct approximations for irrational functions in the complex variable z. The main mathematical tool that will be used is a special continued fraction expansion that cause the rational approximant to collocate the irrational function at specific important values of z. This paper introduces two theorems that facilitate the construction of the rational approxima- tion. </p> </div> </div> </div>


2021 ◽  
Vol 16 (2) ◽  
pp. 717-757
Author(s):  
Ignacio Esponda ◽  
Demian Pouzo

We provide an equilibrium framework for modeling the behavior of an agent who holds a simplified view of a dynamic optimization problem. The agent faces a Markov decision process, where a transition probability function determines the evolution of a state variable as a function of the previous state and the agent's action. The agent is uncertain about the true transition function and has a prior over a set of possible transition functions; this set reflects the agent's (possibly simplified) view of her environment and may not contain the true function. We define an equilibrium concept and provide conditions under which it characterizes steady‐state behavior when the agent updates her beliefs using Bayes' rule.


Author(s):  
Wieb Bosma ◽  
Cor Kraaikamp

AbstractAmong all possible semiregular continued fraction expansions of an irrational number the one with the best approximation properties, in a well-defined and natural sense, is determined. Some properties of this so called optimal continued fraction expansion are described.


Sign in / Sign up

Export Citation Format

Share Document