scholarly journals On the number of factors in codings of three interval exchange

2011 ◽  
Vol Vol. 13 no. 3 (Graph Theory) ◽  
Author(s):  
Petr Ambrož ◽  
Anna Frid ◽  
Zuzana Masáková ◽  
Edita Pelantová

Graph Theory International audience We consider exchange of three intervals with permutation (3, 2, 1). The aim of this paper is to count the cardinality of the set 3iet (N) of all words of length N which appear as factors in infinite words coding such transformations. We use the strong relation of 3iet words and words coding exchange of two intervals, i.e., Sturmian words. The known asymptotic formula #2iet(N)/N-3 similar to 1/pi(2) for the number of Sturmian factors allows us to find bounds 1/3 pi(2) +o(1) \textless= #3iet(N)N-4 \textless= 2 pi(2) + o(1)

2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Mauricio Soto ◽  
Christopher Thraves-Caro

Graph Theory International audience In this document, we study the scope of the following graph model: each vertex is assigned to a box in ℝd and to a representative element that belongs to that box. Two vertices are connected by an edge if and only if its respective boxes contain the opposite representative element. We focus our study on the case where boxes (and therefore representative elements) associated to vertices are spread in ℝ. We give both, a combinatorial and an intersection characterization of the model. Based on these characterizations, we determine graph families that contain the model (e. g., boxicity 2 graphs) and others that the new model contains (e. g., rooted directed path). We also study the particular case where each representative element is the center of its respective box. In this particular case, we provide constructive representations for interval, block and outerplanar graphs. Finally, we show that the general and the particular model are not equivalent by constructing a graph family that separates the two cases.


2007 ◽  
Vol Vol. 9 no. 2 ◽  
Author(s):  
Jean-Pierre Borel

International audience Many results are already known, concerning the palindromic factors and the palindomic prefixes of Standard billiard words, i.e., Sturmian words and billiard words in any dimension, starting at the origin. We give new geometrical proofs of these results, especially for the existence in any dimension of Standard billiard words with arbitrary long palindromic prefixes.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


2002 ◽  
Vol 12 (01n02) ◽  
pp. 371-385 ◽  
Author(s):  
JEAN BERSTEL

Sturmian words are infinite words over a two-letter alphabet that admit a great number of equivalent definitions. Most of them have been given in the past ten years. Among several extensions of Sturmian words to larger alphabets, the Arnoux–Rauzy words appear to share many of the properties of Sturmian words. In this survey, combinatorial properties of these two families are considered and compared.


2018 ◽  
Vol 29 (05) ◽  
pp. 705-720 ◽  
Author(s):  
V. Berthé ◽  
F. Dolce ◽  
F. Durand ◽  
J. Leroy ◽  
D. Perrin

Dendric words are infinite words that are defined in terms of extension graphs. These are bipartite graphs that describe the left and right extensions of factors. Dendric words are such that all their extension graphs are trees. They are also called tree words. This class of words includes classical families of words such as Sturmian words, codings of interval exchanges, or else, Arnoux–Rauzy words. We investigate here the properties of substitutive dendric words and prove some rigidity properties, that is, algebraic properties on the set of substitutions that fix a dendric word. We also prove that aperiodic minimal dendric subshifts (generated by dendric words) cannot have rational topological eigenvalues, and thus, cannot be generated by constant length substitutions.


2001 ◽  
Vol Vol. 4 no. 2 ◽  
Author(s):  
Ján Maňuch

International audience Let X be a two-element set of words over a finite alphabet. If a bi-infinite word possesses two X-factorizations which are not shiftequivalent, then the primitive roots of the words in X are conjugates. Note, that this is a strict sharpening of a defect theorem for bi-infinite words stated in \emphKMP. Moreover, we prove that there is at most one bi-infinite word possessing two different X-factorizations and give a necessary and sufficient conditions on X for the existence of such a word. Finally, we prove that the family of sets X for which such a word exists is parameterizable.


2002 ◽  
Vol Vol. 5 ◽  
Author(s):  
Anton Černý

International audience The i-th symbol of the well-known infinite word of Thue on the alphabet \ 0,1\ can be characterized as the parity of the number of occurrences of the digit 1 in the binary notation of i. Generalized words of Thue are based on counting the parity of occurrences of an arbitrary word w∈\ 0,1\^+-0^* in the binary notation of i. We provide here the standard Lyndon factorization of some subclasses of this class of infinite words.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Philippe Biane ◽  
Matthieu Josuat-Vergès

International audience It is known that the number of minimal factorizations of the long cycle in the symmetric group into a product of k cycles of given lengths has a very simple formula: it is nk−1 where n is the rank of the underlying symmetric group and k is the number of factors. In particular, this is nn−2 for transposition factorizations. The goal of this work is to prove a multivariate generalization of this result. As a byproduct, we get a multivariate analog of Postnikov's hook length formula for trees, and a refined enumeration of final chains of noncrossing partitions.


2007 ◽  
Vol Vol. 9 no. 2 ◽  
Author(s):  
Gwenael Richomme

International audience In a previous paper, we characterized free monoid morphisms preserving finite Lyndon words. In particular, we proved that such a morphism preserves the order on finite words. Here we study morphisms preserving infinite Lyndon words and morphisms preserving the order on infinite words. We characterize them and show relations with morphisms preserving Lyndon words or the order on finite words. We also briefly study morphisms preserving border-free words and those preserving the radix order.


2013 ◽  
Vol Vol. 15 no. 3 (Graph Theory) ◽  
Author(s):  
Delia Garijo ◽  
Antonio González ◽  
Alberto Márquez

Graph Theory International audience We study a graph parameter related to resolving sets and metric dimension, namely the resolving number, introduced by Chartrand, Poisson and Zhang. First, we establish an important difference between the two parameters: while computing the metric dimension of an arbitrary graph is known to be NP-hard, we show that the resolving number can be computed in polynomial time. We then relate the resolving number to classical graph parameters: diameter, girth, clique number, order and maximum degree. With these relations in hand, we characterize the graphs with resolving number 3 extending other studies that provide characterizations for smaller resolving number.


Sign in / Sign up

Export Citation Format

Share Document