scholarly journals McKay Centralizer Algebras

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Georgia Benkart ◽  
Tom Halverson

International audience For a finite subgroup G of the special unitary group SU2, we study the centralizer algebra Zk(G) = EndG(V⊗k) of G acting on the k-fold tensor product of its defining representation V = C2. The McKay corre- spondence relates the representation theory of these groups to an associated affine Dynkin diagram, and we use this connection to study the structure and representation theory of Zk(G) via the combinatorics of the Dynkin diagram. When G equals the binary tetrahedral, octahedral, or icosahedral group, we exhibit remarkable connections between Zk (G) and the Martin-Jones set partition algebras.

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Zajj Daugherty ◽  
Peter Herbrich

International audience We review and introduce several approaches to the study of centralizer algebras of the infinite symmetric group $S_{\infty}$. Our work is led by the double commutant relationship between finite symmetric groups and partition algebras; in the case of $S_{\infty}$, we obtain centralizer algebras that are contained in partition algebras. In view of the theory of symmetric functions in non-commuting variables, we consider representations of $S_{\infty}$ that are faithful and that contain invariant elements; namely, non-unitary representations on sequence spaces. Nous étudions les algèbres du centralisateur du groupe symétrique infini $S_{\infty}$, passant en revue certaines approches et en introduisant de nouvelles. Notre travail est basé sur la relation du double commutant entre le groupe symétrique fini et les algèbres de partition; dans le cas de $S_{\infty}$, nous obtenons des algèbres du centralisateur contenues dans les algèbres de partition. Compte tenu de la théorie des fonctions symétriques en variables non commutatives, nous considérons les représentations de $S_{\infty}$ qui sont fidèles et contiennent les invariants; c’est-à-dire, les représentations non unitaires sur les espaces de suites.


1975 ◽  
Vol 78 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Simon Wassermann

A deep result in the theory of W*-tensor products, the Commutation theorem, states that if M and N are W*-algebras faithfully represented as von Neumann algebras on the Hilbert spaces H and K, respectively, then the commutant in L(H ⊗ K) of the W*-tensor product of M and N coincides with the W*-tensor product of M′ and N′. Although special cases of this theorem were established successively by Misonou (2) and Sakai (3), the validity of the general result remained conjectural until the advent of the Tomita-Takesaki theory of Modular Hilbert algebras (6). As formulated, the Commutation theorem is a spatial result; that is, the W*-algebras in its statement are taken to act on specific Hilbert spaces. Not surprisingly, therefore, known proofs rely heavily on techniques of representation theory.


1994 ◽  
Vol 46 (2) ◽  
pp. 397-414 ◽  
Author(s):  
Yiu-Tung Poon ◽  
Zhong-Jin Ruan

AbstractWe study operator algebras with contractive approximate identities and their double centralizer algebras. These operator algebras can be characterized as L∞- Banach algebras with contractive approximate identities. We provide two examples, which show that given a non-unital operator algebra A with a contractive approximate identity, its double centralizer algebra M(A) may admit different operator algebra matrix norms, with which M(A) contains A as an M-ideal. On the other hand, we show that there is a unique operator algebra matrix norm on the unitalization algebra A1 of A such that A1 contains A as an M-ideal.


2008 ◽  
Vol 07 (02) ◽  
pp. 231-262
Author(s):  
M. PARVATHI ◽  
B. SIVAKUMAR

In this paper we study a new class of diagram algebras, the Klein-4 diagram algebras denoted by Rk(n). These algebras are the centralizer algebras of the group Gn := (ℤ2 × ℤ2)≀Sn acting on V⊗k, where V is the signed permutation module for Gn These algebras have been realized as subalgebras of the extended G-vertex colored partition algebras introduced by Parvathi and Kennedy in [7]. In this paper we give a combinatorial rule for the decomposition of the tensor powers of the signed permutation representation of Gn by explicitly constructing the basis for the irreducible modules. In the process we also give the basis for the irreducible modules appearing in the decomposition of V⊗k in [5]. We then use this rule to describe the Bratteli diagram of Klein-4 diagram algebras.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Matthew Housley ◽  
Heather M. Russell ◽  
Julianna Tymoczko

International audience The $A_2$-spider category encodes the representation theory of the $sl_3$ quantum group. Kuperberg (1996) introduced a combinatorial version of this category, wherein morphisms are represented by planar graphs called $\textit{webs}$ and the subset of $\textit{reduced webs}$ forms bases for morphism spaces. A great deal of recent interest has focused on the combinatorics of invariant webs for tensors powers of $V^+$, the standard representation of the quantum group. In particular, the invariant webs for the 3$n$th tensor power of $V^+$ correspond bijectively to $[n,n,n]$ standard Young tableaux. Kuperberg originally defined this map in terms of a graphical algorithm, and subsequent papers of Khovanov–Kuperberg (1999) and Tymoczko (2012) introduce algorithms for computing the inverse. The main result of this paper is a redefinition of Kuperberg's map through the representation theory of the symmetric group. In the classical limit, the space of invariant webs carries a symmetric group action. We use this structure in conjunction with Vogan's generalized tau-invariant and Kazhdan–Lusztig theory to show that Kuperberg's map is a direct analogue of the Robinson–Schensted correspondence.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Federico Ardila ◽  
Thomas Bliem ◽  
Dido Salazar

International audience Stanley (1986) showed how a finite partially ordered set gives rise to two polytopes, called the order polytope and chain polytope, which have the same Ehrhart polynomial despite being quite different combinatorially. We generalize his result to a wider family of polytopes constructed from a poset P with integers assigned to some of its elements. Through this construction, we explain combinatorially the relationship between the Gelfand–Tsetlin polytopes (1950) and the Feigin–Fourier–Littelmann–Vinberg polytopes (2010, 2005), which arise in the representation theory of the special linear Lie algebra. We then use the generalized Gelfand–Tsetlin polytopes of Berenstein and Zelevinsky (1989) to propose conjectural analogues of the Feigin–Fourier–Littelmann–Vinberg polytopes corresponding to the symplectic and odd orthogonal Lie algebras. Stanley (1986) a montré que chaque ensemble fini partiellement ordonné permet de définir deux polyèdres, le polyèdre de l'ordre et le polyèdre des cha\^ınes. Ces polyèdres ont le même polynôme de Ehrhart, bien qu'ils soient tout à fait distincts du point de vue combinatoire. On généralise ce résultat à une famille plus générale de polyèdres, construits à partir d'un ensemble partiellement ordonné ayant des entiers attachés à certains de ses éléments. Par cette construction, on explique en termes combinatoires la relation entre les polyèdres de Gelfand-Tsetlin (1950) et ceux de Feigin-Fourier-Littelmann-Vinberg (2010, 2005), qui apparaissent dans la théorie des représentations des algèbres de Lie linéaires spéciales. On utilise les polyèdres de Gelfand-Tsetlin généralisés par Berenstein et Zelevinsky (1989) afin d'obtenir des analogues (conjecturés) des polytopes de Feigin-Fourier-Littelmann-Vinberg pour les algèbres de Lie symplectiques et orthogonales impaires.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Christopher J. Brooks ◽  
Abraham Mart\'ın Campo ◽  
Frank Sottile

International audience We show that the Galois group of any Schubert problem involving lines in projective space contains the alternating group. Using a criterion of Vakil and a special position argument due to Schubert, this follows from a particular inequality among Kostka numbers of two-rowed tableaux. In most cases, an easy combinatorial injection proves the inequality. For the remaining cases, we use that these Kostka numbers appear in tensor product decompositions of $\mathfrak{sl}_2\mathbb{C}$ -modules. Interpreting the tensor product as the action of certain commuting Toeplitz matrices and using a spectral analysis and Fourier series rewrites the inequality as the positivity of an integral. We establish the inequality by estimating this integral. On montre que le groupe de Galois de tout problème de Schubert concernant des droites dans l'espace projective contient le groupe alterné. En utilisant un critère de Vakil et l'argument de position spéciale due à Schubert, ce résultat se déduit d'une inégalité particulière des nombres de Kostka des tableaux ayant deux rangées. Dans la plupart des cas, une injection combinatoriale facile montre l’inégalité. Pour les cas restants, on utilise le fait que ces nombres de Kostka apparaissent dans la décomposition en produit tensoriel des $\mathfrak{sl}_2\mathbb{C}$-modules. En interprétant le produit tensoriel comme l'action de certaines matrices de Toeplitz commutant entre elles, et en utilisant de l'analyse spectrale et les séries de Fourier, on réécrit l’inégalité comme la positivité d'une intégrale. L’inégalité sera établie en estimant cette intégrale.


1993 ◽  
Vol 08 (08) ◽  
pp. 1479-1511 ◽  
Author(s):  
MAKOTO IDZUMI ◽  
TETSUJI TOKIHIRO ◽  
KENJI IOHARA ◽  
MICHIO JIMBO ◽  
TETSUJI MIWA ◽  
...  

We study the higher spin analogs of the six-vertex model on the basis of its symmetry under the quantum affine algebra [Formula: see text]. Using the method developed recently for the XXZ spin chain, we formulate the space of states, transfer matrix, vacuum, creation/ annihilation operators of particles, and local operators, purely in the language of representation theory. We find that, regardless of the level of the representation involved, the particles have spin 1/2, and that the n-particle space has an RSOS type structure rather than a simple tensor product of the one-particle space. This agrees with the picture proposed earlier by Reshetikhin.


Author(s):  
L. Felipe Müller ◽  
Dominik J. Wrazidlo

AbstractThe Brauer category is a symmetric strict monoidal category that arises as a (horizontal) categorification of the Brauer algebras in the context of Banagl’s framework of positive topological field theories (TFTs). We introduce the chromatic Brauer category as an enrichment of the Brauer category in which the morphisms are component-wise labeled. Linear representations of the (chromatic) Brauer category are symmetric strict monoidal functors into the category of real vector spaces and linear maps equipped with the Schauenburg tensor product. We study representation theory of the (chromatic) Brauer category, and classify all its faithful linear representations. As an application, we use indices of fold lines to construct a refinement of Banagl’s concrete positive TFT based on fold maps into the plane.


Sign in / Sign up

Export Citation Format

Share Document