scholarly journals Centralizers of the infinite symmetric group

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Zajj Daugherty ◽  
Peter Herbrich

International audience We review and introduce several approaches to the study of centralizer algebras of the infinite symmetric group $S_{\infty}$. Our work is led by the double commutant relationship between finite symmetric groups and partition algebras; in the case of $S_{\infty}$, we obtain centralizer algebras that are contained in partition algebras. In view of the theory of symmetric functions in non-commuting variables, we consider representations of $S_{\infty}$ that are faithful and that contain invariant elements; namely, non-unitary representations on sequence spaces. Nous étudions les algèbres du centralisateur du groupe symétrique infini $S_{\infty}$, passant en revue certaines approches et en introduisant de nouvelles. Notre travail est basé sur la relation du double commutant entre le groupe symétrique fini et les algèbres de partition; dans le cas de $S_{\infty}$, nous obtenons des algèbres du centralisateur contenues dans les algèbres de partition. Compte tenu de la théorie des fonctions symétriques en variables non commutatives, nous considérons les représentations de $S_{\infty}$ qui sont fidèles et contiennent les invariants; c’est-à-dire, les représentations non unitaires sur les espaces de suites.

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Pierre-Loïc Mèliot

International audience We study the fluctuations of models of random partitions $(\mathbb{P}_n,ω )_n ∈\mathbb{N}$ stemming from the representation theory of the infinite symmetric group. Using the theory of polynomial functions on Young diagrams, we establish a central limit theorem for the values of the irreducible characters $χ ^λ$ of the symmetric groups, with $λ$ taken randomly according to the laws $\mathbb{P}_n,ω$ . This implies a central limit theorem for the rows and columns of the random partitions, and these ``geometric'' fluctuations of our models can be recovered by relating central measures on partitions, generalized riffle shuffles, and Brownian motions conditioned to stay in a Weyl chamber. Nous étudions les fluctuations de modèles de partitions aléatoires $(\mathbb{P}_n,ω )_n ∈\mathbb{N}$ issus de la théorie des représentations du groupe symétrique infini. En utilisant la théorie des fonctions polynomiales sur les diagrammes de Young, nous établissons un théorème central limite pour les valeurs des caractères irréductibles $χ ^λ$ des groupes symétriques, avec $λ$ pris aléatoirement suivant les lois $\mathbb{P}_n,ω$ . Ceci implique un théorème central limite pour les lignes et les colonnes des partitions aléatoires, et ces fluctuations ``géométriques'' de nos modèles peuvent être retrouvées en reliant les mesures centrales sur les partitions, les battages généralisés de cartes, et les mouvements browniens conditionnés à rester dans une chambre de Weyl.


1987 ◽  
Vol 106 ◽  
pp. 143-162 ◽  
Author(s):  
Nobuaki Obata

The infinite symmetric group is the discrete group of all finite permutations of the set X of all natural numbers. Among discrete groups, it has distinctive features from the viewpoint of representation theory and harmonic analysis. First, it is one of the most typical ICC-groups as well as free groups and known to be a group of non-type I. Secondly, it is a locally finite group, namely, the inductive limit of usual symmetric groups . Furthermore it is contained in infinite dimensional classical groups GL(ξ), O(ξ) and U(ξ) and their representation theories are related each other.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Valentin Féray ◽  
Piotr Sniady

International audience In this paper we establish a new combinatorial formula for zonal polynomials in terms of power-sums. The proof relies on the sign-reversing involution principle. We deduce from it formulas for zonal characters, which are defined as suitably normalized coefficients in the expansion of zonal polynomials in terms of power-sum symmetric functions. These formulas are analogs of recent developments on irreducible character values of symmetric groups. The existence of such formulas could have been predicted from the work of M. Lassalle who formulated two positivity conjectures for Jack characters, which we prove in the special case of zonal polynomials. Dans cet article, nous établissons une nouvelle formule combinatoire pour les polynômes zonaux en fonction des fonctions puissance. La preuve utilise le principe de l'involution changeant les signes. Nous en déduisons des formules pour les caractères zonaux, qui sont définis comme les coefficients des polynômes zonaux écrits sur la base des fonctions puissance, normalisés de manière appropriée. Ces formules sont des analogues de développements récents sur les caractères du groupe symétrique. L'existence de telles formules aurait pu être prédite à partir des travaux de M. Lassalle, qui a proposé deux conjectures de positivité sur les caractères de Jack, que nous prouvons dans le cas particulier des polynômes zonaux.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Jia Huang

International audience We define an action of the $0$-Hecke algebra of type A on the Stanley-Reisner ring of the Boolean algebra. By studying this action we obtain a family of multivariate noncommutative symmetric functions, which specialize to the noncommutative Hall-Littlewood symmetric functions and their $(q,t)$-analogues introduced by Bergeron and Zabrocki. We also obtain multivariate quasisymmetric function identities, which specialize to a result of Garsia and Gessel on the generating function of the joint distribution of five permutation statistics. Nous définissons une action de l’algèbre de Hecke-$0$ de type A sur l’anneau Stanley-Reisner de l’algèbre de Boole. En étudiant cette action, on obtient une famille de fonctions symétriques non commutatives multivariées, qui se spécialisent pour les non commutatives fonctions de Hall-Littlewood symétriques et leur $(q,t)$-analogues introduits par Bergeron et Zabrocki. Nous obtenons également des identités de fonction quasisymmetrique multivariées, qui se spécialisent à la suite de Garsia et Gessel sur la fonction génératrice de la distribution conjointe de cinq statistiques de permutation.


10.37236/1506 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Alexei Borodin ◽  
Grigori Olshanski

We construct examples of nonnegative harmonic functions on certain graded graphs: the Young lattice and its generalizations. Such functions first emerged in harmonic analysis on the infinite symmetric group. Our method relies on multivariate interpolation polynomials associated with Schur's S and P functions and with Jack symmetric functions. As a by–product, we compute certain Selberg–type integrals.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Guillaume Chapuy ◽  
Valentin Feray ◽  
Eric Fusy

International audience We consider unicellular maps, or polygon gluings, of fixed genus. In FPSAC '09 the first author gave a recursive bijection transforming unicellular maps into trees, explaining the presence of Catalan numbers in counting formulas for these objects. In this paper, we give another bijection that explicitly describes the ``recursive part'' of the first bijection. As a result we obtain a very simple description of unicellular maps as pairs made by a plane tree and a permutation-like structure. All the previously known formulas follow as an immediate corollary or easy exercise, thus giving a bijective proof for each of them, in a unified way. For some of these formulas, this is the first bijective proof, e.g. the Harer-Zagier recurrence formula, or the Lehman-Walsh/Goupil-Schaeffer formulas. Thanks to previous work of the second author this also leads us to a new expression for Stanley character polynomials, which evaluate irreducible characters of the symmetric group. Nous considèrons des cartes orientèes à une face de genre fixé. à SFCA'09 le premier auteur a introduit une bijection rècursive envoyant une carte unicellulaire vers un arbre, ce qui permet d'obtenir des formules ènumèratives pour les cartes à une face (et en particulier la prèsence des nombres de Catalan). Dans l'article ici prèsent, et en nous appuyant sur la bijection ci-dessus, nous obtenons une incarnation très simple des cartes à une face comme des paires formèes d'un arbre plan et d'une permutation d'un certain type. Toutes les formules prècèdemment connues dècoulent aisèment de cette nouvelle incarnation, donnant des preuves bijectives dans un cadre unifié. Pour certaines de ces formules, telles que la rècurrence de Harer-Zagier ou les formules de Lehman-Walsh/Goupil-Schaeffer, nous obtenons la première preuve bijective connue. Par ailleurs, en combinant notre approche avec des travaux du second auteur, nous obtenons une nouvelle expression pour les polynômes de Stanley qui donnent certaines èvaluations des caractères du groupe symètrique.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Laura Colmenarejo

International audience Plethysm coefficients are important structural constants in the theory of symmetric functions and in the representations theory of symmetric groups and general linear groups. In 1950, Foulkes observed stability properties: some sequences of plethysm coefficients are eventually constants. Such stability properties were proven by Brion with geometric techniques and by Thibon and Carré by means of vertex operators. In this paper we present a newapproach to prove such stability properties. This new proofs are purely combinatorial and follow the same scheme. We decompose plethysm coefficients in terms of other plethysm coefficients (related to the complete homogeneous basis of symmetric functions). We show that these other plethysm coefficients count integer points in polytopes and we prove stability for them by exhibiting bijections between the corresponding sets of integer points of each polytope. Les coefficients du pléthysme sont des constantes de structure importantes de la théorie des fonctions symétriques, ainsi que de la théorie de la représentation des groupes symétriques et des groupes généraux linéaires. En 1950, Foulkes a observé pour ces coefficients de phénomènes de stabilité: certaines suites de coefficients du pléthysme sont stationnaires. De telles propriétés ont été démontrées par Brion, au moyen de techniques géométriques, et par Thibon et Carré, au moyen d’opérateurs vertex. Dans ce travail, nous présentons une nouvelle approche, purement combinatoire, pour démontrer des propriétés de stabilité de ce type. Nous décomposons les coefficients du pléthysme comme somme alternées de coefficients de pléthysme d’un autre type (liés à la base des fonctions symétriques sommes complètes), qui comptent les points entiers dans des polytopes. Nous démontrons la stabilité des suites de ces coefficients en exhibant des bijections entres les ensembles de points entiers des polytopes correspondants.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Jason Bandlow ◽  
Jennifer Morse

International audience A combinatorial expansion of the Hall-Littlewood functions into the Schur basis of symmetric functions was first given by Lascoux and Schützenberger, with their discovery of the charge statistic. A combinatorial expansion of stable Grassmannian Grothendieck polynomials into monomials was first given by Buch, using set-valued tableaux. The dual basis of the stable Grothendieck polynomials was given a combinatorial expansion into monomials by Lam and Pylyavskyy using reverse plane partitions. We generalize charge to set-valued tableaux and use all of these combinatorial ideas to give a nice expansion of Hall-Littlewood polynomials into the dual Grothendieck basis. \par En associant une charge à un tableau, une formule combinatoire donnant le développement des polynômes de Hall-Littlewood en termes des fonctions de Schur a été obtenue par Lascoux et Schützenberger. Une formule combinatoire donnant le développement des polynômes de Grothendieck Grassmanniens stables en termes des fonctions monomiales a quant à elle été obtenue par Buch à l'aide de tableaux à valeurs sur des ensembles. Finalement, une formule faisant intervenir des partitions planaires inverses a été obtenue par Lam et Pylyavskyy pour donner le développement de la base duale aux polynômes de Grothendieck stables en termes de monômes. Nous généralisons le concept de charge aux tableaux à valeurs sur des ensembles et, en nous servant de toutes ces notions combinatoires, nous obtenons une formule élégante donnant le développement des polynômes de Hall-Littlewood en termes de la base de Grothendieck duale.


2018 ◽  
Vol 10 (03) ◽  
pp. 605-625 ◽  
Author(s):  
Alexander A. Gaifullin ◽  
Yury A. Neretin

We consider a category [Formula: see text] whose morphisms are [Formula: see text]-dimensional pseudomanifolds equipped with certain additional structures (coloring and labeling of some cells), multiplication of morphisms is similar to a concatenation of cobordisms. On the other hand, we consider the product [Formula: see text] of [Formula: see text] copies of infinite symmetric group. We construct a correspondence between the sets of morphisms of [Formula: see text] and double coset spaces of [Formula: see text] with respect to certain subgroups. We show that unitary representations of [Formula: see text] produce functors from the category of [Formula: see text] to the category of Hilbert spaces and bounded linear operators.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Georgia Benkart ◽  
Tom Halverson

International audience For a finite subgroup G of the special unitary group SU2, we study the centralizer algebra Zk(G) = EndG(V⊗k) of G acting on the k-fold tensor product of its defining representation V = C2. The McKay corre- spondence relates the representation theory of these groups to an associated affine Dynkin diagram, and we use this connection to study the structure and representation theory of Zk(G) via the combinatorics of the Dynkin diagram. When G equals the binary tetrahedral, octahedral, or icosahedral group, we exhibit remarkable connections between Zk (G) and the Martin-Jones set partition algebras.


Sign in / Sign up

Export Citation Format

Share Document