scholarly journals Modeling of Thermophilic Anaerobic Digestion of Municipal Sludge Waste using Anaerobic Digestion Model No. 1 (ADM1)

2021 ◽  
Vol 15 ◽  
pp. 18-19
Author(s):  
Taekjun Lee ◽  
Young Haeng Lee

Anaerobic digestion model no. 1 (ADM1) model of international water association was applied to a lab-scale thermophilic anaerobic digestion process for the treatment of activated sludge wastes originating from a municipal wastewater treatment plant. The aim of the present study is to compare the results obtained from the simulation with the experimental values. The simulated results showed a good fit for cumulative produced methane gas volume and the concentration profile of total volatile fatty acids (VFAs).

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1812 ◽  
Author(s):  
Beraki Bahre Mehari ◽  
Sheng Chang ◽  
Youngseck Hong ◽  
Han Chen

Thermal hydrolysis (TH) and biological hydrolysis (BH) are two main and growing anaerobic digestion pretreatment technologies. In this study, municipal wastewater sludge samples were collected from the Guelph Wastewater Treatment Plant (WWTP) in Ontario, Canada. The effects of temperature on BH treatment, including BH at 42 °C (BH42), 42 °C followed by 55 °C (BH42+55), 55 °C followed by 42 °C (BH55+42), and 55 °C (BH55) were evaluated for anaerobic digestion performance enhancement and compared with TH treatment at 165 °C. The TH, BH42, BH42+55, BH55+42, and BH55 treatments caused the reduction of volatile suspended solids (VSS) by 22.6%, 17.5%, 24.6%, 23.1%, and 25.9%, respectively. The soluble chemical oxygen demand (sCOD) content of the sludge increased by 377.5%, 323.8%, 301.3%, 286.9%, and 221.7% by the TH, BH55, BH42+55, BH55+42, and BH42 treatments, respectively. Volatile fatty acids (VFA) constituted around 40% of the sCOD in the BH-treated sludge and 6% in the TH-treated sludge. The cumulative methane yields (NmLCH4/g COD fed) of sludge treated by BH55+42 and TH were respectively 23% and 20% higher than that of the untreated sludge. For BH pretreatment, sludge treated by BH55+42 produced more methane than those treated by BH42+55, BH55, and BH42. The methane yields of the combined sludge treated by the TH and BH55+42 treatments were in the ranges of 248.9 NmLCH4/g COD to 266.1 NmLCH4/g COD fed, and 255.3 NmLCH4/g COD to 282.2 NmLCH4/g COD fed, respectively.


2017 ◽  
Vol 19 (3) ◽  
pp. 130-135
Author(s):  
Anna Ciaciuch ◽  
Jerzy Gaca ◽  
Karolina Lelewer

Abstract The research presents the changes in chemical oxygen demand (COD) fractions during the two-stage thermal disintegration and anaerobic digestion (AD) of sewage sludge in municipal wastewater treatment plant (WWTP). Four COD fractions have been separated taking into account the solubility of substrates and their susceptibility to biodegradation: inert soluble organic matter SI, readily biodegradable substrate SS, slowly biodegradable substrates XS and inert particulate organic material XI. The results showed that readily biodegradable substrates SS (46.8% of total COD) and slowly biodegradable substrates XS (36.1% of total COD) were dominant in the raw sludge effluents. In sewage effluents after two-stage thermal disintegration, the percentage of SS fraction increased to 90% of total COD and percentage of XS fraction decreased to 8% of total COD. After AD, percentage of SS fraction in total COD decreased to 64%, whereas the percentage of other fractions in effluents increased.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 391
Author(s):  
Paolo S. Calabrò ◽  
Filippo Fazzino ◽  
Carlo Limonti ◽  
Alessio Siciliano

Anaerobic digestion (AD) represents a suitable option for the management of the waste-activated sludge (WAS) produced in municipal wastewater treatment plants. Nevertheless, due to its complex characteristics, WAS is often barely degradable under conventional anaerobic processes. The use of conductive materials during AD provides a promising route for enhancing WAS digestion, through the effects of direct inter-species electron transfer (DIET). The present paper aims to evaluate the effects of the addition of four different materials—granular activated carbon (GAC), granular iron, and aluminium and steel scrap powders—in semi-continuous lab-scale reactors under very high volatile fatty acids-to-alkalinity ratios. In particular, the use of metallic aluminium in WAS digestion was investigated for the first time and compared to the other materials. The AD of WAS without the addition of conductive materials was impossible, while the use of steel powder and zero-valent iron is shown not to improve the digestion process in a satisfactory way. On the contrary, both GAC and Al allow for effective WAS degradation. At stable conditions, methane yields of about 230 NmLCH4/gVS and 212 NmLCH4/gVS are recorded for GAC- and Al-amended reactors, respectively. These two materials are the most promising in sustaining WAS AD through DIET also in case of unbalanced volatile fatty acids-to-alkalinity ratios.


2021 ◽  
Vol 13 (4) ◽  
pp. 15
Author(s):  
Harjinder Kaur ◽  
Raghava R. Kommalapati

The potential of cotton gin waste, a considerable challenge to the gin owners, has not been fully investigated as a renewable energy source via anaerobic digestion. The weathered cotton gin trash and inoculum for triplicate biomethane potential assays were obtained from a local cotton gin mill and a municipal wastewater treatment plant, respectively. The moisture, total solids, volatile solids, and C, H, N, S, hemicellulose + cellulose, and lignin contents of gin waste were determined in triplicates. The biomethane potential of untreated and pretreated (hot water and 6% NaOH (wet CGT weight basis) gin waste was determined at different inoculum to substrate ratios. The highest cumulative biomethane yield of 111.8 mL gvs-1 was observed in inoculum to substrate ratio of 2.3, and it was statistically similar to the values; 101.8, 104.7, 100.5, and 108.9 gvs-1, observed in 0.8, 1.2, 1.5, and 1.9, respectively. The biomethane yield at the inoculum to substrate ratio of 0.4 was significantly lower than all higher ratios. The T80-90 for biomethane production was 26-30 for the ISRs of 1.2, 1.5, and 2.3. The T80-90 for inoculum to substrate ratios of 0.4, 0.8, and 1.9 were 26-31, 27-32, and 27-31 d, respectively. The modified Gompertz equation fitted very well (R2 = 0.98-0.99) to the anaerobic digestion at all inoculum to substrate ratios and pretreatments as the observed and predicted biomethane values were similar. The model predicted a lag phase of 8-10 days for control and treatments compared to the observed of 10-15 days. The highest biodegradability of 24.8±2.6% was observed at inoculum to substrate ratio of 2.3, which was statistically similar to the values observed in ratios of 0.8, 1.2, 1.5, and 1.9, respectively. Among pretreatments, the highest biodegradability of 33.0±2.4 was observed in 6% NaOH pretreatment, and it was statistically similar to hot water treatment and non-pretreated or control. These research findings advance the knowledge in the anaerobic degradation of cotton gin trash, thus helping to maximize biomethane recovery from this agro-industrial waste.


2015 ◽  
Vol 72 (6) ◽  
pp. 1016-1021 ◽  
Author(s):  
Patricia Torres-Lozada ◽  
José Sánchez Díaz-Granados ◽  
Brayan Alexis Parra-Orobio

Water purification and wastewater treatment generate sludge, which must be adequately handled to prevent detrimental effects to the environment and public health. In this study, we examined the influence of the application of settled sludge from a drinking water treatment plant (SDWTP) on the anaerobic digestion (AD) of the thickened primary sludge from a municipal wastewater treatment plant (SWWTP) which uses chemically assisted primary treatment (CAPT). On both plants the primary coagulant is ferric chloride. The study was performed at laboratory scale using specific methanogenic activity (SMA) tests, in which mixtures of SWWTP–SDWTP with the ratios 100:00, 80:20, 75:25, 70:30 and 00:100 were evaluated. Methane detection was also performed by gas chromatography for a period of 30 days. Our results show that all evaluated ratios that incorporate SDWTP, produce an inhibitory effect on the production of methane. The reduction in methane production ranged from 26% for the smallest concentration of SDWTP (20%) to more than 70% for concentrations higher than 25%. The results indicated that the hydrolytic stage was significantly affected, with the hydrolysis constant Kh also reduced by approximately 70% (0.24–0.26 day−1 for the different ratios compared with 0.34 day−1 for the SWWTP alone). This finding demonstrates that the best mixtures to be considered for anaerobic co-digestion must contain a fraction of SDWTP below 20%.


2014 ◽  
Vol 69 (11) ◽  
pp. 2350-2356 ◽  
Author(s):  
N. M. Hai ◽  
S. Sakamoto ◽  
V. C. Le ◽  
H. S. Kim ◽  
R. Goel ◽  
...  

Activated Sludge Models (ASMs) assume an unbiodegradable organic particulate fraction in the activated sludge, which is derived from the decay of active microorganisms in the sludge and/or introduced from wastewater. In this study, a seasonal change of such activated sludge constituents in a municipal wastewater treatment plant was monitored for 1.5 years. The chemical oxygen demand ratio of the unbiodegradable particulates to the sludge showed a sinusoidal pattern ranging from 40 to 65% along with the change of water temperature in the plant that affected the decay rate. The biogas production in a laboratory-scale anaerobic digestion (AD) process was also affected by the unbiodegradable fraction in the activated sludge fed. Based on the results a chemical pre-treatment using H2O2 was conducted on the digestate to convert the unbiodegradable fraction to a biodegradable one. Once the pre-treated digestate was returned to the digester, the methane conversion increased up to 80% which was about 2.4 times as much as that of the conventional AD process, whilst 96% of volatile solids in the activated sludge was digested. From the experiment, the additional route of the organic conversion processes for the inert fraction at the pre-treatment stage was modelled on the ASM platform with reasonable simulation accuracy.


Author(s):  
Jia Li ◽  
Hong Yang

Along with the development and progress of environmental protection management, it is necessary to pay full attention to the disposal of excess sludge in the process of urban sewage treatment plant management. Ensure effective integration of management mechanisms and management paths. To a certain extent, it can improve the actual efficiency of digestion and treatment work and lay a foundation for the optimal operation of environmental protection management. In this paper, the treatment of excess sludge in a sewage treatment plant is studied. The method and results of anaerobic digestion test of excess sludge in a sewage treatment plant are discussed for reference only.


Sign in / Sign up

Export Citation Format

Share Document