A modified anaerobic digestion process with chemical sludge pre-treatment and its modelling

2014 ◽  
Vol 69 (11) ◽  
pp. 2350-2356 ◽  
Author(s):  
N. M. Hai ◽  
S. Sakamoto ◽  
V. C. Le ◽  
H. S. Kim ◽  
R. Goel ◽  
...  

Activated Sludge Models (ASMs) assume an unbiodegradable organic particulate fraction in the activated sludge, which is derived from the decay of active microorganisms in the sludge and/or introduced from wastewater. In this study, a seasonal change of such activated sludge constituents in a municipal wastewater treatment plant was monitored for 1.5 years. The chemical oxygen demand ratio of the unbiodegradable particulates to the sludge showed a sinusoidal pattern ranging from 40 to 65% along with the change of water temperature in the plant that affected the decay rate. The biogas production in a laboratory-scale anaerobic digestion (AD) process was also affected by the unbiodegradable fraction in the activated sludge fed. Based on the results a chemical pre-treatment using H2O2 was conducted on the digestate to convert the unbiodegradable fraction to a biodegradable one. Once the pre-treated digestate was returned to the digester, the methane conversion increased up to 80% which was about 2.4 times as much as that of the conventional AD process, whilst 96% of volatile solids in the activated sludge was digested. From the experiment, the additional route of the organic conversion processes for the inert fraction at the pre-treatment stage was modelled on the ASM platform with reasonable simulation accuracy.

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 573 ◽  
Author(s):  
Juhee Shin ◽  
Si-Kyung Cho ◽  
Joonyeob Lee ◽  
Kwanghyun Hwang ◽  
Jae Chung ◽  
...  

Waste activated sludge (WAS) is a byproduct of municipal wastewater treatment. WAS contains a large proportion of inactive microbes, so when it is used as a substrate for anaerobic digestion (AD), their presence can interfere with monitoring of active microbial populations. To investigate how influent cells affect the active and inactive microbial communities during digestion of WAS, we operated model mesophilic bioreactors with conventional conditions. Under six different hydraulic retention times (HRTs; 25, 23, 20, 17, 14, and 11.5 d), the chemical oxygen demand (COD) removal and CH4 production of the AD were within a typical range for mesophilic sludge digesters. In the main bacteria were proteobacteria, bacteroidetes, and firmicutes in both the WAS and the bioreactors, while in main archaeal methanogen group was Methanosarcinales in the WAS and methanomicrobiales in the bioreactors. Of the 106 genera identified, the estimated net growth rates were negative in 72 and positive in 34. The genera with negative growth included many aerobic taxa. The genera with positive growth rates included methanogens and syntrophs. In some taxa, the net growth rate could be positive or negative, depending on HRT, so their abundance was also affected by HRT. This study gives insights into the microbial dynamics of a conventional sludge anaerobic digester by distinguishing potentially active (growing) and inactive (non-growing, dormant) microbes and by correlating population dynamics with process parameters.


2016 ◽  
Vol 75 (4) ◽  
pp. 775-781 ◽  
Author(s):  
J. A. Barrios ◽  
U. Duran ◽  
A. Cano ◽  
M. Cisneros-Ortiz ◽  
S. Hernández

Anaerobic digestion of wastewater sludge is the preferred method for sludge treatment as it produces energy in the form of biogas as well as a stabilised product that may be land applied. Different pre-treatments have been proposed to solubilise organic matter and increase biogas production. Sludge electrooxidation with boron-doped diamond electrodes was used as pre-treatment for waste activated sludge (WAS) and its effect on physicochemical properties and biomethane potential (BMP) was evaluated. WAS with 2 and 3% total solids (TS) achieved 2.1 and 2.8% solubilisation, respectively, with higher solids requiring more energy. After pre-treatment, biodegradable chemical oxygen demand values were close to the maximum theoretical BMP, which makes sludge suitable for energy production. Anaerobic digestion reduced volatile solids (VS) by more than 30% in pre-treated sludge with a food to microorganism ratio of 0.15 g VSfed g−1 VSbiomass. Volatile fatty acids were lower than those for sludge without pre-treatment. Best pre-treatment conditions were 3% TS and 28.6 mA cm−2.


2013 ◽  
Vol 20 (1) ◽  
pp. 199-208 ◽  
Author(s):  
Marketa Julinova ◽  
Jan Kupec ◽  
Roman Slavik ◽  
Maria Vaskova

Abstract A synthetic polymer, polyvinylpyrrolidone (PVP - E 1201) primarily finds applications in the pharmaceutical and food industries due to its resistance and zero toxicity to organisms. After ingestion, the substance passes through the organism unchanged. Consequently, it enters the systems of municipal wastewater treatment plants (WWTP) without decomposing biologically during the waste treatment process, nor does it attach (through sorption) to particles of activated sludge to any significant extent, therefore, it passes through the system of a WWTP, which may cause the substance to accumulate in the natural environment. For this reason the paper investigates the potential to initiate aerobic biodegradation of PVP in the presence of activated sludge from a municipal wastewater treatment plant. The following agents were selected as the initiators of the biodegradation process - co-substrates: acrylamide, N-acethylphenylalanine and 1-methyl-2-pyrrolidone, a substance with a similar structure to PVP monomer. The biodegradability of PVP in the presence of co-substrates was evaluated on the basis of biological oxygen demand (BOD) as determined via a MicroOxymax O2/CO2/CH4 respirometer. The total substrate concentration in the suspension equaled 400 mg·dm-3, with the ratio between PVP and the cosubstrate being 1:1, while the concentration of the dry activated sludge was 500 mg·dm-3. Even though there was no occurrence of a significant increase in the biodegradation of PVP alone in the presence of a co-substrate, acrylamide appeared to be the most effective type of co-substrate. Nevertheless, a recorded decrease in the slope of biodegradation curves over time may indicate that a process of primary decomposition was underway, which involves the production of metabolites that inhibit activated sludge microorganisms. The resulting products are not identified at this stage of experimentation.


2021 ◽  
Vol 13 (9) ◽  
pp. 4874
Author(s):  
Gan Chin Heng ◽  
Mohamed Hasnain Isa ◽  
Serene Sow Mun Lock ◽  
Choon Aun Ng

Anaerobic digestion (AD) appears to be a popular unit operation in wastewater treatment plant to treat waste activated sludge (WAS) and the produced methane gas can be harvested as renewable energy. However, WAS could inhibit hydrolysis stage during AD and hence pre-treatment is required to overcome the issue. This paper aimed to study the effect of electrochemical pre-treatment (EP) towards efficiency of AD using titanium coated with ruthenium oxide (Ti/RuO2) electrodes. The investigation has been carried out using in-house laboratory batch-scale mesophilic anaerobic digester, mixed under manipulation of important operating parameters. Optimization was performed on EP using response surface methodology and central composite design to maximize sludge disintegration and dewaterability. By operating at optimal conditions (pH 11.65, total solids 22,000 mg/L, electrolysis time 35 min, current density 6 mA/cm2, and 1000 mg/L of sodium chloride), the pre-treated WAS in terms of mixed liquor volatile suspended solids (MLVSS) removal, soluble chemical oxygen demand (sCOD), capillary suction time (CST) reduction, and extracellular polymeric substance (EPS) were 38%, 4800 mg/L (increased from 935 mg/L), 33%, and 218 mg/L, respectively. Following AD, the volatile solids (VS) removal and chemical oxygen demand (COD) removal by EP were enhanced from 40.7% and 54.7% to 47.2% and 61.5%, respectively, at steady-state. The biogas produced from control and electrochemical pre-treated WAS were in the ranges of 0.12 to 0.17 and 0.2 to 0.24 m3/kg VSfed, respectively, and the volume of biogas produced was 44–67% over the control. Based on the results obtained, suitability of EP for WAS prior to AD was confirmed.


2017 ◽  
Vol 19 (3) ◽  
pp. 130-135
Author(s):  
Anna Ciaciuch ◽  
Jerzy Gaca ◽  
Karolina Lelewer

Abstract The research presents the changes in chemical oxygen demand (COD) fractions during the two-stage thermal disintegration and anaerobic digestion (AD) of sewage sludge in municipal wastewater treatment plant (WWTP). Four COD fractions have been separated taking into account the solubility of substrates and their susceptibility to biodegradation: inert soluble organic matter SI, readily biodegradable substrate SS, slowly biodegradable substrates XS and inert particulate organic material XI. The results showed that readily biodegradable substrates SS (46.8% of total COD) and slowly biodegradable substrates XS (36.1% of total COD) were dominant in the raw sludge effluents. In sewage effluents after two-stage thermal disintegration, the percentage of SS fraction increased to 90% of total COD and percentage of XS fraction decreased to 8% of total COD. After AD, percentage of SS fraction in total COD decreased to 64%, whereas the percentage of other fractions in effluents increased.


2018 ◽  
Vol 78 (9) ◽  
pp. 1861-1870 ◽  
Author(s):  
Ahmet E. Uman ◽  
Joseph G. Usack ◽  
José L. Lozano ◽  
Largus T. Angenent

Abstract A previous study had reported that the Fenton reaction at full scale increased the digestibility of thickened sludge in a digester. The authors of the study had observed a positive effect on biogas productivity, but without a control. Here, we evaluated this result by investigating the anaerobic treatment characteristics of fresh, thickened sludge in an experimental design with a control. To accomplish this, two identical continuously stirred anaerobic digesters (CSADs) were operated in parallel at mesophilic conditions. We also included anaerobic settlers to mimic the full-scale plant and to accomplish sludge recycling. We fed fresh, thickened sludge to both setups once every other day, but performed the Fenton reaction with only the experimental system by adding H2O2 to the recycled biosolids from the anaerobic settler. We observed very large fluctuations in biogas production due to ever-changing characteristics of the thickened sludge both on a daily and seasonal basis. Regardless, the two setups performed almost identically with: 1) chemical oxygen demand removal efficiencies of 63.8 ± 2.9% and 62.1 ± 3.2%; and 2) biogas productivities of 0.280 and 0.279 L CH4·g−1 volatile solids for the experimental (with Fenton) and control (without Fenton) CSADs, respectively. These results indicate that the use of a Fenton reaction did not affect biogas productivities.


2013 ◽  
Vol 14 (2) ◽  
pp. 141-148

In recent years many researchers show a high interest in co-digestion, simultaneous anaerobic decomposition of a homogenous mixture of at least two biodegradable waste. Anaerobic codigestion is reported to offer several benefits over digestion of separate materials, such as increased cost-efficiency, increased biodegradation of the treated materials, as well as increased biogas production. Most often sewage sludge is digested alone while co-digestion with other substrates could be beneficial. In this study, the feasibility of co-digestion sewage sludge and grease trap waste (GTW) from meatprocessing plant was investigated in lab-scale reactor experiment. The research was made on the sewage sludge coming from municipal wastewater treatment plant and grease trap waste coming from meat industry company. Anaerobic co-digestion was studied in semi-continuous experiment at 37oC. Feeding of reactors was performed once a day with hydraulic retention time (HRT) of 10 days. The grease trap waste accounted for 2, 4, 6, 8 and 10 % of the mixture on the volatile solids basis. The mixtures were analyzed for the following parameters: total solids, volatile solids, pH, volatile fatty acids and long chain fatty acids (LCFAs). The control of digestion process was made every day on the basis of the measurement of the biogas production. What is more, there was determined the volatile solid removal as well the biogas yield in order to assess the efficiency of co-digestion process. It was found that co-digestion of sewage sludge and grease trap waste improved both biogas production and methane content. Grease trap waste addition of 10% of feed VS increased the biogas production by 16 % as well as methane concentration (72 % of biogas) compared to the period when reactor was feed only with sewage sludge. Moreover, the addition of GTW to the anaerobic digestion of sewage sludge increased organic matter removal. Although, the significant variations in LCFAs reduction, the biogas production and methane yield increased with higher addition of GTW. The results of the present laboratory study revealed that the use of GTW as a co-substrate is considered to be interesting option for sewage sludge digestion due to increased methane production. However, the feed should be planned carefully with stepwise increase to the desired feed ratio in order to acclimatize the bacteria and to prevent reactor overloading.


2016 ◽  
Vol 75 (6) ◽  
pp. 1261-1269 ◽  
Author(s):  
Fardin Abiri ◽  
Narges Fallah ◽  
Babak Bonakdarpour

In the present study the feasibility of the use of a bacterial batch sequential anaerobic–aerobic process, in which activated sludge was used in both parts of the process, for pretreatment of wastewater generated by a textile dyeing factory has been considered. Activated sludge used in the process was obtained from a municipal wastewater treatment plant and adapted to real dyeing wastewater using either an anaerobic-only or an anaerobic–aerobic process over a period of 90 days. The use of activated sludge adapted using the anaerobic–aerobic process resulted in a higher overall decolorization efficiency compared to that achieved with activated sludge adapted using the anaerobic-only cycles. Anaerobic and aerobic periods of around 34 and 22 hours respectively resulted in an effluent with chemical oxygen demand (COD) and color content which met the standards for discharge into the centralized wastewater treatment plant of the industrial estate in which the dyeing factory was situated. Neutralization of the real dyeing wastewater and addition of carbon source to it, both of which results in significant increase in the cost of the bacterial treatment process, was not found to be necessary to achieve the required discharge standards.


2020 ◽  
Vol 15 (3) ◽  
pp. 683-696
Author(s):  
Vaileth Hance ◽  
Thomas Kivevele ◽  
Karoli Nicholas Njau

Abstract The energy demand, which is expected to increase more worldwide, has sparked the interest of researchers to find sustainable and inexpensive sources of energy. This study aims to integrate an energy recovering step into municipal wastewater treatment plants (MWWTPS) through anaerobic digestion. The anaerobic digestion of municipal wastewater (MWW), and then co-digestion with sugar cane molasses (SCM) to improve its organic content, was conducted at 25 °C and 37 °C. The results showed a substrate mixture containing 6% of SCM and total solids (TS) of 7.52% yielded a higher amount of biogas (9.73 L/L of modified substrate). However, chemical oxygen demand (COD) of the resulting digestate was high (10.1 g/L) and pH was not stable, and hence needed careful adjustment using 2 M of NaOH solution. This study recommends a substrate mixture containing SCM (2%) and TS (4.34%) having biogas production (4.97 L/L of modified substrate) for energy recovery from MWWTPS, since it was found to have more stable pH and low COD residue (1.8 g/L), which will not hold back the MWW treatment process. The annual generation of modified substrate (662,973 m3) is anticipated to generate about 16,241 m3 of methane, which produces up to 1.8 GWh and 8,193 GJ per annum.


1997 ◽  
Vol 35 (6) ◽  
pp. 63-70 ◽  
Author(s):  
Yoshimasa Watanabe ◽  
Yoshihiko Iwasaki

This paper describes a pilot plant study on the performance of a hybrid small municipal wastewater treatment system consisting of a jet mixed separator(JMS) and upgraded RBC. The JMS was used as a pre-treatment of the RBC instead of the primary clarifier. The treatment capacity of the system was fixed at 100 m3/d, corresponding to the hydraulic loading to the RBC of 117 L/m2/d. The effluent from the grid chamber at a municipal wastewater treatment plant was fed into the hybrid system. The RBC was operated using the electric power produced by a solar electric generation panel with a surface area of 8 m2 under enough sunlight. In order to reduce the organic loading to the RBC, polyaluminium chloride(PAC) was added to the JMS influent to remove the colloidal and suspended organic particles. At the operational condition where the A1 dosage and hydraulic retention time of the JMS were fixed at 5 g/m3 and 45 min., respectively, the average effluent water quality of hybrid system was as follows: TOC=8 g/m3, Total BOD=8 g/m3, SS=8 g/m3, Turbidity=6 TU, NH4-N=7 g/m3, T-P=0.5 g/m3. In this operating condition, electric power consumption of the RBC for treating unit volume of wastewater is only 0.07 KWH/m3.


Sign in / Sign up

Export Citation Format

Share Document