scholarly journals Finite Element Analysis of the Lower Extrtemity - Hinge Knee Behavior Under Dynamic Load

Author(s):  
L. Zach ◽  
S. Konvickova ◽  
P. Ruzicka

A key goal of joint endoprosthesis is to become a full-featured functional and anatomical replacement. The joint damage may occur for several reasons - primarily a disease of different nature and magnitude, resulting in gradual and irreversible changes and in an extreme solution in the implantation of artificial joints. However, there should be also mentioned accidents leading to joint destruction, which are often "trigger mechanism" of the disease. This work therefore presents a dynamic computational finite element analysis of a hinge-type knee replacement, which aim to streamline and accelerate the development of knee endoprosthesis. It tackles a question of the overall strength of the implant and detects sites of elevated concentrations of stresses that may be potential sources of implant damages. It also studies the behavior of the endoprosthesis under dynamic loads with emphasis on the study of the shape and size of the contact surfaces, which are closely related to the size of the contact pressure and material wear. Aside the hinged knee replacement, the computational model consisted of femur, fibula, tibia, patella and 25 most important muscles of the lower limb. Due to realistic definition of the boundary conditions, this model is suitable for investigation of invivo knee joint replacement behavior.

2012 ◽  
Vol 271-272 ◽  
pp. 705-709
Author(s):  
Hong Jiang Chen ◽  
Yue Hai Wu

Space grid structure of modern large span structure engineering in the most commonly used structure form. This paper used ANSYS network space truss finite element analysis, discuss the element type, and the selection of material models, and the definition of the limit stress, when necessary, even considering the bar buckling state ( buckling ). Under various load (permanent loads, wind loads, seismic loads, under the action of gravity ), using the powerful finite element analysis software ANSYS on the structure static analysis, after the use of ANSYS powerful optimization design function, the structure safety, the bar section optimization design, and then on the basis of the existing rod a cross section, a reasonable choice of bar section, reduce the material consumption, to achieve the best economic, reasonable design, implementation can develop continuously, make the satisfactory design.


Author(s):  
V. Devaraja Holla ◽  
S. S. Krishnan ◽  
B. Gurumoorthy

Abstract This paper describes an algorithm for the construction of solid model from measured point data using Convex Partitioning approach. Convex Partitioning approach is based on the idea that any non-convex body can be viewed as a combination of several convex pieces. The input constitutes a set or cluster of points, measured on each face of the object, which is obtained by scanning the part. Points in each cluster are used to fit a plane or a non-planar surface depending upon the type of face. Partitioning is done along the planes till one gets all the convex pieces. The individual convex pieces are then combined together to get the final model of the object. The definition of convex partition is relaxed for objects having curved faces, to be an object with all its edges convex. Apart from allowing the construction of solid model from measured point data, the output (convex pieces) obtained from this approach is useful in planning for rapid prototyping and feature suppression in finite element analysis.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2377
Author(s):  
Wisanupong Takian ◽  
Supakit Rooppakhun ◽  
Atthaphon Ariyarit ◽  
Sedthawatt Sucharitpwatskul

Total knee replacement is a standard surgical treatment used to treat osteoarthritis in the knee. The implant is complicated, requiring expensive designs and testing as well as a surgical intervention. This research proposes a technique concerning the optimal conformity design of the symmetric polyethylene tibial insert component for fixed-bearing total knee arthroplasty. The Latin Hypercube Sampling (LHS) design of the experiment was used to create 30 cases of the varied tibial insert conformity that influenced the total knee replacement wear volume. The combination of finite element analysis and a surrogate model was performed to predict wear volume according to the standard of ISO-14243:2014 wear test and to determine the optimal conformity. In the first step, the results could predict wear volume between 5.50 to 72.92 mm3/106 cycle. The Kriging method of a surrogate model has then created the increased design based on the efficient global optimization (EGO) method with improving data 10 design points. The result revealed that the optimum design of tibial insert conformity in a coronal and sagittal plane was 0.70 and 0.59, respectively, with a minimizing wear volume of 3.07 mm3/106 cycle. The verification results revealed that the area surface scrape and wear volume are similar to those predicted by the experiment. The wear behavior on the tibial insert surface was asymmetry of both sides. From this study it can be concluded that the optimal conformity design of the tibial insert component can be by using a finite element and surrogate model combined with the design of conformity to the minimized wear volume.


2016 ◽  
Vol 723 ◽  
pp. 363-368 ◽  
Author(s):  
P.M. Ogar ◽  
D.B. Gorokhov

The paper is devoted to the definition of the deformation during indentation of the sphere and its relationship with the tensile deformation. Proposed by different authors methods of determining the deformation of the contact are considered. The results of their researches may vary significantly. It is shown that in the last decade to determine the deformation, the finite element analysis taking into account the "sink-in/pile-up", i.e. an elastic sinking in and plastic piling up of the material on the edges of the indent during the indentation process is widely used. The purpose of this research is to determine the relationship between tension deformation and sphere indentation deformation with taking into account the last achievements in the field of finite-element modeling of elastic-plastic sphere indentation. It is considered two methods of determining of deformation. One uses the equation proposed by S.I. Bulychev, in which the Mayer’s index is determined from the results of finite element analysis. The second method use the energy concept of hardness. It is based on the assumption that within the range of uniform deformation during uniaxial tension and during sphere indentation, the same energy is consumed to the plastic displacement of the part of the material volume out of limits of initial volume. They have close results. The corresponding graphic relations are shown.


2011 ◽  
Vol 52-54 ◽  
pp. 261-266 ◽  
Author(s):  
Jian Hua Zhang ◽  
Shou Shan Jiang

The Dynamics Analysis & Simulation of the Rocket Sled were done based on the Multibody System Dynamics and Finite Element Analysis Theory. The most difficult work in the analysis is how to establish the boundary conditions of the rocket sled. This paper makes this kind of attempt. Then the relevant postprocessing figures and data were obtained,thereby providing the designer and manufacturer with detailed and reliable data. The conclusion is the simulation method is more effective than those before and the boundary conditions are acceptable.


2012 ◽  
Vol 17 (4) ◽  
pp. 360-369 ◽  
Author(s):  
Clare K. Fitzpatrick ◽  
Mark A. Baldwin ◽  
Chadd W. Clary ◽  
Lorin P. Maletsky ◽  
Paul J. Rullkoetter

Sign in / Sign up

Export Citation Format

Share Document