scholarly journals Soil and Crop management relation with water use efficiency in Dryland agriculture

2020 ◽  
Vol 5 (01) ◽  
pp. 75-89
Author(s):  
Attia El Gayar

The problem of shortage of water to crops can be resolved by increasing total water supply available to plants, increasing water use relative to other losses and efficient management of scarce water. Biophysically, solutions to many of the problems will require the improvement of soil, water, and crop management at the field, plot, and farm level: first, to increase the capture and retention of incoming (rain) water; and second, to maximize the proportion of that water productively transpired by the crop. Dry land agriculture under rain fed conditions is found mainly in Africa, the Middle East, Asia, and Latin America. In the harsh environments of Sub-Saharan Africa (SSA) and West Asia and North Africa (WANA), water is the principal factor limiting crop yield. A review has been carried out on soil and crop management research that can increase the water use efficiency. The WANA production systems are dominated by cereals, primarily wheat in the wetter and barley in the drier areas, in rotation with mainly food legumes such as chickpea, lentil and forage legumes. The SSA production systems are generally characterized by cereal/legume mixed-cropping dominated by maize, millet, sorghum, and wheat. The major constraints in both regions to crop production are low soil fertility, insecure rainfall, and low-productive genotypes, low adoption of improved soil and crop management practices, and lack of appropriate institutional support. Different cropping systems and accompanying technologies are discussed. Results indicate that there is an advantage to apply these technologies but being function of socio-economic and bio-physical conditions. It is recommended that future research focuses on integrated technology development while taking into account also different levels of scale such as field, village, and watershed.

2022 ◽  
Vol 32 (1) ◽  
pp. 21-27
Author(s):  
Osama Mohawesh ◽  
Ammar Albalasmeh ◽  
Sanjit Deb ◽  
Sukhbir Singh ◽  
Catherine Simpson ◽  
...  

Colored shading nets have been increasingly studied in semi-arid crop production systems, primarily because of their ability to reduce solar radiation with the attendant reductions in air, plant, and soil temperatures. However, there is a paucity of research concerning the impact of colored shading nets on various crops grown under semi-arid environments, particularly the sweet pepper (Capsicum annum) production system. This study aimed to investigate the effects of three colored shading net treatments (i.e., white, green, and black shading nets with 50% shading intensity and control with unshaded conditions) on the growth and instantaneous water use efficiency (WUE) of sweet pepper. The results showed that all colored shading nets exhibited significantly lower daytime air temperatures and light intensity (22 to 28 °C and 9992 lx, respectively) compared with the control (32 to 37 °C and 24,973 lx, respectively). There were significant differences in sweet pepper growth performance among treatments, including plant height, shoot dry weight, leaf area, leaf chlorophyll content, and vitamin C in ripened fruit. The enhanced photosynthetic rates were observed in sweet pepper plants under the colored shading nets compared with control plants. WUE increased among the colored shading net treatments in the following order: control ≤ white < black < green. Overall, the application of green and black shading nets to sweet pepper production systems under semi-arid environments significantly enhanced plant growth responses and WUE.


2010 ◽  
Vol 149 (S1) ◽  
pp. 123-131 ◽  
Author(s):  
W. J. DAVIES ◽  
J. ZHANG ◽  
J. YANG ◽  
I. C. DODD

SUMMARYGlobally, agriculture accounts for 0·80–0·90 of all freshwater used by humans and, in many crop production systems, this water use is unsustainable. The current paper focuses on the potential exploitation of novel drought stress biology in both crop improvement programmes and via changed crop management practices. The aim is to deliver ‘more crop per drop’. In order to respond to the challenge of feeding a world population of seven billion and growing, it is concluded that an interdisciplinary approach is needed involving new genetic opportunities and plant breeding. It is also shown how crop management can exploit the drought stress physiology of plants to deliver improved water productivity without sacrificing crop yield.


2018 ◽  
Vol 54 (2A) ◽  
pp. 98
Author(s):  
Nguyen Van Tuyen

Retaining abundant flood water and later using it as crop irrigation water is an issue for the flood-prone area in the Mekong Delta of Viet Nam. The present study aimed to determine an appropriate rice-based upland crop production practice with high water use efficiency and hence the feasibility of retaining flood water for agricultural use in the flood area in the Mekong Delta. On-farm studies were carried out in Chau Phu district of An Giang province from January 2012 to July 2015. Chilli, maize, rice were used as the proxy crops. Crop irrigation water quantity was monitored, and crop yields and economic inputs and outputs were recorded. Results showed that maize or chilli grown on the paddy field were more water-efficient than rice cropping grown alone. Double maize and chilli cropping and rotational rice and maize or chilli cropping required an irrigation water volume of 3,341 m3/ha and 3,686 m3/ha, respectively, compared to 4,289 m3/ha for the commonly-applied double rice cropping. For financial water use efficiency, each cubic meter of water used for crop irrigation yielded a net value of output of 10,950 $VN with double maize and chilli cropping , 6,370 $VN with rotational rice and maize or chilli and 2,790 $VN with double rice cropping practice. These results need to be validated with more farmers’ fields to evaluate the feasibility of the promising crop production systems in larger scale.


2021 ◽  
Vol 3 (1) ◽  
pp. 110-117
Author(s):  
Pius Kipchumba Cheboi ◽  
Shahida Anusha Siddiqui ◽  
Japheth Onyando ◽  
Clement Kiprotich Kiptum ◽  
Volker Heinz

The objective of this study was to determine the effect of paddy rice ploughing techniques on water use and the yield of rice crop, as well as water use efficiency for rice growing in small-holder irrigation schemes. The study was conducted at a farmer’s field in Powo B sub-block of Maugo Irrigation Scheme. The period of study was from July 2019 to January 2020, which is the rice season. The experimental site was located in the vicinity of Olare Shopping Centre, Kamenya Sub-location, Kochia East Location, Kochia Ward, Rangwe Sub-County, Homa Bay County, Nyanza Region, Kenya in Maugo rice scheme in Kenya. In the study, four irrigation tillage practices were applied: ox-plough, conventional ox-plough, hand hoe and tractor ploughing. The results showed that conventional ox-ploughing consumed the highest amount of water at 1240 mm. The highest water use efficiency of 0.49 kg/m3 and highest yield of 5.7 tons/ha were observed for hand hoe ploughing. Use of the hand hoe ploughing technique increased yields by 20 percent, as compared to the conventional ox-ploughing. Therefore, the use of water for ploughing is not necessary in the study area. Future research will be needed to see how farmers are adopting the technology before scaling up to full mechanization, as partial mechanization was not profitable.


2014 ◽  
Vol 94 (2) ◽  
pp. 223-235 ◽  
Author(s):  
R. Kröbel ◽  
R. Lemke ◽  
C. A. Campbell ◽  
R. Zentner ◽  
B. McConkey ◽  
...  

Kröbel, R., Lemke, R., Campbell, C. A., Zentner, R., McConkey, B., Steppuhn, H., De Jong, R. and Wang, H. 2014. Water use efficiency of spring wheat in the semi-arid Canadian prairies: Effect of legume green manure, type of spring wheat, and cropping frequency. Can. J. Soil Sci. 94: 223–235. In the semi-arid Canadian prairie, water is the main determinant of crop production; thus its efficient use is of major agronomic interest. Previous research in this region has demonstrated that the most meaningful way to measure water use efficiency (WUE) is to use either precipitation use efficiency (PUE) or a modified WUE that accounts for the inefficient use of water in cropping systems that include summer fallow. In this paper, we use these efficiency measures to determine how cropping frequency, inclusion of a legume green manure, and the type of spring wheat [high-yielding Canada Prairie Spring (CPS) vs. Canada Western Red Spring (CWRS)] influence WUE using 25 yr of data (1987–2011) from the “New Rotation” experiment conducted at Swift Current, Saskatchewan. This is a well-fertilized study that uses minimum and no-tillage techniques and snow management to enhance soil water capture. We compare these results to those from a 39-yr “Old Rotation” experiment, also at Swift Current, which uses conventional tillage management. Our results confirmed the positive effect on WUE of cropping intensity, and of CPS wheat compared with CWRS wheat, while demonstrating the negative effect on WUE of a green manure crop in wheat-based rotations in semiarid conditions. Furthermore, we identified a likely advantage of using reduced tillage coupled with water conserving snow management techniques for enhancing the efficiency of water use.


2014 ◽  
Vol 50 (4) ◽  
pp. 549-572 ◽  
Author(s):  
V. S. RATHORE ◽  
N. S. NATHAWAT ◽  
B. MEEL ◽  
B. M. YADAV ◽  
J. P. SINGH

SUMMARYThe choice of an appropriate cropping system is critical to maintaining or enhancing agricultural sustainability. Yield, profitability and water use efficiency are important factors for determining suitability of cropping systems in hot arid region. In a two-year field experiment (2009/10–2010/11) on loam sandy soils of Bikaner, India, the production potential, profitability and water use efficiency (WUE) of five cropping systems (groundnut–wheat, groundnut–isabgol, groundnut–chickpea, cluster bean–wheat and mung bean–wheat) each at six nutrient application rate (NAR) i.e. 0, 25, 50, 75, 100% recommended dose of N and P (NP) and 100% NP + S were evaluated. The cropping systems varied significantly in terms of productivity, profitability and WUEs. Averaged across nutrient application regimes, groundnut–wheat rotation gave 300–1620 kg ha−1 and 957–3365 kg ha−1 higher grain and biomass yields, respectively, than other cropping systems. The mean annual net returns were highest for the mung bean–wheat system, which returned 32–57% higher net return than other cropping systems. The mung bean–wheat and cluster bean–wheat systems had higher WUE in terms of yields than other cropping systems. The mung bean–wheat system recorded 35–63% higher WUE in monetary terms compared with other systems. Nutrients application improved yields, profit and WUEs of cropping systems. Averaged across years and cropping systems, the application of 100% NP improved grain yields, returns and WUE by 1.7, 3.9 and 1.6 times than no application of nutrients. The results suggest that the profitability and WUEs of crop production in this hot arid environment can be improved, compared with groundnut–wheat cropping, by substituting groundnut by mung bean and nutrients application.


1991 ◽  
Vol 27 (4) ◽  
pp. 351-364 ◽  
Author(s):  
J. Amir ◽  
J. Krikun ◽  
D. Orion ◽  
J. Putter ◽  
S. Klitman

2019 ◽  
pp. 13-29 ◽  
Author(s):  
Syed Ahsan Zahoor ◽  
Shakeel Ahmad ◽  
Ashfaq Ahmad ◽  
Aftab Wajid ◽  
Tasneem Khaliq ◽  
...  

2002 ◽  
Vol 2 (1) ◽  
pp. 141-144 ◽  
Author(s):  
Muhammad Shafiq ◽  
Iqbal Hassan . ◽  
Zahid Hussain .

Sign in / Sign up

Export Citation Format

Share Document