scholarly journals Application of Fuzzy Controller for Improvement of Power Quality using UPQC

Author(s):  
Kundeti Krishna Rao , M Sonia

Generally, one of the custom power device in FACTS called unified power quality conditioner, which is used to compensate the voltage and current-related Power Quality issues in the distribution systems. The proposed UPQC technology have an advantage of reduced dc-link voltage without compromising its compensation capability. This new method also helps to meet the requirement of dc-link voltage for the shunt and series active filters of the UPQC. This type of topology has a capacitor in series with the interfacing inductor across the shunt active filter for filtering purpose, and the system neutral is also considered and directly connected to neutral of distribution system avoid the requirement of the fourth leg in the voltage source inverter. This paper also presents a concept for improving power quality of a power distribution system such as an FUZZY logic controller along with the UPQC control strategy. The simulation results are compared for both conventional PI controller and FUZZY controller.

The Indian economy has been growing at a fast pace since the beginning of this millennium. Due to constraints in the availability of fuel and environmental concerns, the power generation sector has not kept pace with other industrial sectors. One way of increasing the power availability is by reducing the high losses in the existing power transmission and distribution systems. The current increases in the motor windings when the voltages in the three phases are unbalanced. Compensation for reactive power and unbalance in the power distribution system are key factors in improving the power quality to the end user. A Distributed Static Compensator [DSTATCOM] is a custom power device, which is connected in shunt with the load in the distribution system to compensate the reactive power due unbalanced loads. The performance of the DSTATCOM is based on the control technique used for finding the voltage referred and current components to be considered. Voltage compensation is defined as the error in voltage in the grid and that the value of voltage that has to be induced in the grid. This is analyzed by using DSTATCOM for voltage compensation with series converter controller block. This paper gives the simulation of voltage compensation to rectify the issue of voltage swell/sag in order to improve the power quality in the distribution system.


Author(s):  
Jasti Venkata Ramesh Babu ◽  
Malligunta Kiran Kumar

Power quality is one big issue in power system and a big challenge for power engineers today. Electrical consumers (or otherwise load devices) expect electrical power received power should be of first-class. Bad quality in electrical power directs to fuse blowing, machine overheating, increase in distribution losses, damage to sensitive load devices and many more. DSTATCOM is one of the FACTS controllers designed to improve the quality in electrical power and thus improving the performance of distribution system. This paper presents a multilevel DSTATCOM topology to enhance power quality in power distribution system delivering high-quality power to the customer load devices. Diode-clamped structure is employed for multi-level DSTATCOM structure. ‘PQ’ based control strategy generates reference signal which is further processed through level-shifted multi-carrier PWM strategy for the generation of gate pulses to multi-level DSTATCOM structure. Simulation work of proposed system is developed and the result analysis is presented using MATLAB/SIMULINK software. Performance of multi-level DSTATCOM topology is verified with fixed and variable loads.


Author(s):  
May Phone Thit

Nowadays, power quality is one of the major problems in electric power distribution system. The poor power quality at distribution level can affect the operation and performance of sensitive and critical loads. In the distribution systems, poor power quality results in various problems such as higher power losses, harmonics, sag and swells in the voltage, and poor power factor., etc. Unified Power Quality Conditioner (UPQC) is the only versatile device which can mitigate several power quality problems related with distribution system. A UPQC that combines the operations of a Distribution Static Compensator (D-STATCOM) and Dynamic Voltage Restorer (DVR) together with the shunt and series active control devices. UPQC can solve the problems related to the voltage/current harmonics, voltage sag/swell and unbalance in distribution system. To evaluate the performance improvement in the system, a model of UPQC is developed in MATLAB/SIMULINK with a typical distribution network. In this research, UPQC is applied for power quality enhancement of Myaungtagar industrial distribution substation, Myanmar. Enhancements in power quality by UPQC are evaluated under maximum load condition.Keywords—Power Quality, UPQC, Series Controller, Shunt controller, Harmonics


2010 ◽  
Vol 61 (4) ◽  
pp. 193-204 ◽  
Author(s):  
Reza Noroozian ◽  
Mehrdad Abedi ◽  
Gevorg Gharehpetian

Combined Operation of AC and DC Distribution System with Distributed Generation Units This paper presents a DC distribution system which has been supplied by external AC systems as well as local DG units in order to demonstrate an overall solution to power quality issue. In this paper, the proposed operation method is demonstrated by simulation of power transfer between external AC systems, DG units, AC and DC loads. The power flow control in DC distribution system has been achieved by network converters and DG converters. Also, the mathematical model of the network, DG and load converters are obtained by using the average technique, which allows converter systems accurately simulated and control strategies for this converters is achieved. A suitable control strategy for network converters has been proposed that involves DC voltage droop regulator and novel instantaneous power regulation scheme. Also, a novel control technique has been proposed for DG converters. In this paper, a novel control system based on stationary and synchronously rotating reference frame has been proposed for load converters for supplying AC loads connected to the DC bus by balanced voltages. The several case studies have been studied based on proposed methods. The simulation results show that DC distribution systems including DG units can improve the power quality at the point of common coupling (PCC) in the power distribution system or industrial power system.


Author(s):  
JACOB PRABHAKAR BUSI ◽  
SRINIVASARAO YELAVARTHI

This paper proposes the concept of distributed static compensator for compensation of harmonics, unbalances and reactive powers. The main aim of this diesel electrical generator is to generate electrical power and transfer to the distribution point. The main problems occurred in this distribution systems are voltage distributions, interruptions and variations in distribution system also called as power quality problems. The FACTS controllers are classified into different types based on improvement of power quality. These facts devices are classified based on their construction and connection to the line i.e. called as series and shunt converters. This paper also concentrate on the concept of fuzzy logic controller for getting better performance as compared with the previous conventional controllers. Basically, the fuzzy controller has the advantage of low steady state error and also it reduces the These experimental diagrams are verified in Matlab/Simulink and the results are verified for both PI and Fuzzy controllers.


Author(s):  
Anup Kumar Panda ◽  
Suresh Mikkili

Abstract Current harmonics are one of the most common power quality problems and are usually resolved by the use of shunt active filters (SHAF). Control strategies (p-q and id-iq) for extracting the three-phase reference currents for shunt active power filters are compared, evaluating their performance under different source conditions. Three-phase reference current waveforms generated by proposed scheme are tracked by the three-phase voltage source converter in a hysteresis band control scheme.The performance of the control strategies has been evaluated in terms of harmonic mitigation and DC link voltage regulation. The proposed SHAF with different fuzzy M.F.s (Trapezoidal, Triangular and Gaussian) is able to eliminate the uncertainty in the system and SHAF gains outstanding compensation abilities. The detailed simulation results using MATLAB/SIMULINK software are presented to support the feasibility of proposed control strategies.


Author(s):  
Gunjan Varshney ◽  
Durg S. Chauhan ◽  
Madhukar P. Dave ◽  
Nitin

Background: In modern electrical power distribution systems, Power Quality has become an important concern due to the escalating use of automatic, microprocessor and microcontroller based end user applications. Methods: In this paper, power quality improvement has done using Photovoltaic based Distribution Static Compensator (PV-DSTATCOM). Complete simulation modelling and control of Photovoltaic based Distribution Static Compensator have been provided in the presented paper. In this configuration, DSTATCOM is fed by solar photovoltaic array and PV module is also helpful to maintain the DC link voltage. The switching of PV-STATCOM is controlled by Unit template based control theory. Results: The performance of PV-DSTATCOM has been evaluated for Unity Power Factor (UPF) and AC Voltage Control (ACVC) modes. Here, for studying the power quality issues three-phase distribution system is considered and results have been verified through simulation based on MATLAB software. Conclusion: Different power quality issues and their improvement are studied and presented here for harmonic reduction, DC voltage regulation and power factor correction.


DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 141-149 ◽  
Author(s):  
Andres Felipe Panesso-Hernández ◽  
Juan Mora-Flórez ◽  
Sandra Pérez-Londoño

<p>The impedance-based approaches for fault location in power distribution systems determine a faulted line section. Next, these require of the estimation of the voltages and currents at one or both section line ends to exactly determine the fault location. It is a challenge because in most of the power distribution systems, measurements are only available at the main substation.  This document presents a modeling proposal of the power distribution system and an easy implementation method to estimate the voltages and currents at the faulted line section, using the measurements at the main substation, the line, load, transformer parameters and other serial and shunt connected devices and the power system topology. The approach here proposed is tested using a fault locator based on superimposed components, where the distance estimation error is lower than 1.5% in all of the cases. </p>


Author(s):  
A. Sathik Basha ◽  
M. Ramasamy

Increased utilization of nonlinear loads in the power distribution system with profound integration of renewable energy requires improved power quality control. This paper proposes a Reformed Second Order Generalized Integrated (R-SOGI) control scheme for enhancing the output of the Dynamic Voltage Restorer (DVR) for the objective of achieving the desired sinusoidal voltage wave shape at the common point of services and harmonic reduction. The DVR incorporates a Solar Photovoltaic (SPV) system using the Z-source Inverter (ZSI), providing the necessary active power to mitigate the voltage sag/swell and power demand. ZSI offers step-down as well as step-up abilities, it makes the converters to operate in the conditions of shoot-through. Therefore, the application of ZSI-based DVR topology seems very promising. The compensating reference voltage is generated by the R-SOGI algorithm, which offers superior output under conditions for grid voltage irregularities, including voltage sag/swell and unbalanced and distorted utility grid voltages. In comparison to DVR based on the VSI voltage inverter (VSI), the response from ZSI-DVR to a reduction of voltage distortions and harmonics is investigated. An experimental SPV ZSI-DVR prototype is developed in the laboratory to check the effectiveness of the controller and is tested under balanced and unbalanced supply and dynamic load conditions.


Sign in / Sign up

Export Citation Format

Share Document