scholarly journals Power Quality Enhancement of Grid-Connected Solar Photovoltaic System using ANN based Filter

Author(s):  
P Hari Pallavi and P Ankineedu Prasad

Grid-connected photovoltaic (PV) systems are increasingly attracting the attention of industry and academia as a means of providing an alternative to conventional fossil-fuel generation and pollution-free power. This project aims to improve the power quality level of a grid-tied PV distribution system using shunt active power filter (APF) along with adaptive current control technique. In this work Artificial Neural Network controller used to destroy the voltage and current harmonics in a grid-tied PV system. A reference current generation strategy is implemented to mitigate the current harmonics by extracting the fundamental constituents (FCs) from the nonlinear load currents. MCCF is employed to separate the FC from the distorted grid voltages and eliminates the voltage harmonics during extremely polluted grid voltage condition. The comparative analysis is analyzed to check the effectiveness of the proposed hybrid control scheme with existing and adaptive control techniques in respect of power quality, better dc offset rejection, better FC and frequency extraction, and grid synchronization.

Author(s):  
P Hari Pallavi and P Ankineedu Prasad

Grid-connected photovoltaic (PV) systems are increasingly attracting the attention of industry and academia as a means of providing an alternative to conventional fossil-fuel generation and pollution-free power. This project aims to improve the power quality level of a grid-tied PV distribution system using shunt active power filter (APF) along with adaptive current control technique. In this work Artificial Neural Network controller used to destroy the voltage and current harmonics in a grid-tied PV system. A reference current generation strategy is implemented to mitigate the current harmonics by extracting the fundamental constituents (FCs) from the nonlinear load currents. MCCF is employed to separate the FC from the distorted grid voltages and eliminates the voltage harmonics during extremely polluted grid voltage condition. The comparative analysis is analyzed to check the effectiveness of the proposed hybrid control scheme with existing and adaptive control techniques in respect of power quality, better dc offset rejection, better FC and frequency extraction, and grid synchronization.


Author(s):  
B Anand Swaroop and K Jagadeesh

Grid-connected photovoltaic (PV) systems are increasingly attracting the attention of industry and academia as a means of providing an alternative to conventional fossil-fuel generation and pollution-free power. This project aims to improve the power quality level of a grid-tied PV distribution system using shunt active power filter (APF) along with adaptive current control technique. In this work Fuzzy Logic controller used to destroy the voltage and current harmonics in a grid-tied PV system. A reference current generation strategy is implemented to mitigate the current harmonics by extracting the fundamental constituents (FCs) from the nonlinear load currents. MCCF is employed to separate the FC from the distorted grid voltages and eliminates the voltage harmonics during extremely polluted grid voltage condition. The comparative analysis is analyzed to check the effectiveness of the proposed hybrid control scheme with existing and adaptive control techniques in respect of power quality, better dc offset rejection, better FC and frequency extraction, and grid synchronization.


Author(s):  
S. Raja Mohamed ◽  
P. Aruna Jeyanthy ◽  
D. Devaraj

<p>Solar PV system development and integration with existing grid is very fast in recent years all over the world, as they require limited maintenance, pollution free and simple structure. When observing the factors affecting the performance of the grid connected solar photovoltaic system, the inverter output voltage with harmonics add with the harmonics generated due to the non-linear loads, retain a bigger challenge to maintain power quality in the grid. To maintain grid power quality, better inverter control technique should be developed. This paper presents the two control techniques for grid-tied inverters. This study developed the hysteresis controller for the inverter. Hysteresis controller used in this work two way (i) Voltage control mode (ii) Current control mode. Matlab/Simulink model is developed for the proposed system. Further the study presents the comparative evaluation of the performance of both control techniques based on the percentage of total harmonic distortion (THD) with the limits specified by the standards such as IEEE 1547 and IEC 61727 and IEEE Std 519-2014</p>


2014 ◽  
Vol 15 (3) ◽  
pp. 263-277 ◽  
Author(s):  
Nagesh Geddada ◽  
Srinivas B. Karanki ◽  
Mahesh K. Mishra

Abstract This paper proposes a modified four-leg distribution static compensator (DSTATCOM) topology for compensation of unbalanced and nonlinear loads in three-phase four-wire distribution system. DSTATCOM, connected in parallel to the load, supplies reactive and harmonic powers demanded by unbalanced nonlinear loads. In this proposed topology, the voltage source inverter (VSI) of DSTATCOM is connected to point of common coupling (point of interconnection of source, load, DSTATCOM) through interface inductor and series capacitance, unlike the conventional topology which consists of interface inductor alone. Load compensation with a lower value of input DC link voltage of VSI is possible in this modified topology compared to conventional topology. A comparative study on modified and conventional topologies in terms of voltage rating of inverter power switches, switching losses in VSI and power rating of input DC capacitor of VSI is presented. The detailed design aspects of DC link capacitor and interface series capacitor are also presented. The reference filter currents are generated using instantaneous symmetrical component theory and are tracked using hysteresis current control technique. A detailed simulation study is carried out, to compare the compensation performances of conventional, modified topologies using PSCAD simulator and experimental studies are done to validate the simulation results.


Author(s):  
V S Prasadarao K ◽  
K V Krishna Rao ◽  
P Bala Koteswara Rao ◽  
T. Abishai

Renewable energy sources (RES) are gaining more importance in the present scenario due to the depletion of fossil fuels and increasing power demand. Solar energy is the one of the most promising as it is clean and easily available source. The voltage obtained from the PV system is low. This voltage is increased by high step up dc-dc converter which uses only one switch leads to low switching losses and hence the efficiency of this converter is high. To get the good response this converter is operated in closed loop manner. Integration of PV system with existing grid has so many issues like distorted voltage, current and reactive power control etc. This paper presents a four leg inverter which works on hysteresis current control technique to address the power quality issues like reactive power compensation, balanced load currents and compensation of neutral current. The switching to the inverter is designed in such a way that it supplies the extra current to stabilise the current of the grid that is being supplied to the loads. Finally, the proposed technique is validated by using mat lab/Simulink software and corresponding results are presented in this paper.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 331
Author(s):  
Safa Haq ◽  
Shuvra Prokash Biswas ◽  
Md. Kamal Hosain ◽  
Md. Ashib Rahman ◽  
Md. Rabiul Islam ◽  
...  

Due to global warming and shortage of fossil fuels, the grid-connected solar photovoltaic (PV) system has gained significant popularity all over the world. The modular multilevel cascaded (MMC) inverter is the natural choice for step-up transformer and line filter less direct medium voltage grid integration of solar PV systems. However, power quality and loss are the important issues while connecting the PV system to the medium voltage grid through MMC inverter. Modulation technique is the key to maintain output power quality, e.g., total harmonic distortion (THD) and to ensure low switching and conduction losses. In this paper, an advanced modulation technique named “triangle saturated common mode pulse width modulation (TSCMPWM)” control is proposed for a 3-phase 5-level MMC inverter-based grid-tied PV system. Compared to traditional modulation techniques, the proposed TSCMPWM control offers the lowest voltage THD as well as lower inverter power losses. Performance of the proposed modulation technique is evaluated in MATLAB/Simulink environment and tested with a reduced scale prototype test platform. Both simulation and experimental results show the effectiveness of the proposed modulation technique.


2019 ◽  
Vol 1 (3) ◽  
pp. 40-47
Author(s):  
Mohamed jaidu Mansoor ◽  
Ranjith Kumar

Elevation of power electronics technology, converter are the main causes for power quality issues, because of their high switching characteristics.so to reduce the harmonics injected by the nonlinear load, the filters are play a major role to improve a power quality improvement, particularly shunt active filter is more reliable for reduce a harmonic in power system network. This novel technique proposed for design a shunt active filter with solar photovoltaic array integrated into nonlinear load using a Point of Common Coupling (PCC) technique. Zero crossing detection technique are used to extract the magnitude of a fundamental active components of distorted load currents. The estimation of harmonic isolator and current compensation are controlled by Field Programmable Gate Array (FPGA) controller, different types of compensation techniques are used in this work Synchronous reference frame theory, instantaneous reactive power theory (PQ) and hysteresis current control technique. These techniques enable extraction of active power, regulates a load voltage and maintain a phasor sequence at PCC under the voltage sag and swell. Simulation is carried out by MATLAB/SIMULINK for different compensations techniques and Total Harmonics Distortion (THD) values are tabulated.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Varaprasad Janamala

AbstractA new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduction of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin in radial distribution systems and its suitability for practical applications.


Sign in / Sign up

Export Citation Format

Share Document