scholarly journals A Beacon-less Multi-channel Packet Forwarding Scheme in Vehicular Networks

2020 ◽  
pp. 218-223
Author(s):  
Srithar S ◽  
Saravanakumar N M

The ad-hoc vehicular network is a sub stream of an ad-hoc mobile network where the nodes can converse and know each other by their periodic control packet dissemination. In vehicular network communication, the available bandwidth is limited. The parallel and multi-vehicle channel access will create an unwanted delay during the packet dissemination. The node may compete with each other to access the channel during parallel communication. The simultaneous channel access will increase network overload. The proposed approach will minimize the channel access collision through the variable time slots. Before any data dissemination, the node will send a Channel Booking Request (CBR) message to a correspondent node. The spectrum allocation is based on the type of vehicle and message_code. The concept has experimented with traditional routing protocols for overtaking assistance. The proposed approach is compared with the packet delivery rate, jitter, and packet loss rate.

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3788 ◽  
Author(s):  
Lionel Nkenyereye ◽  
Lewis Nkenyereye ◽  
S. M. Riazul Islam ◽  
Yoon-Ho Choi ◽  
Muhammad Bilal ◽  
...  

There is a strong devotion in the automotive industry to be part of a wider progression towards the Fifth Generation (5G) era. In-vehicle integration costs between cellular and vehicle-to-vehicle networks using Dedicated Short Range Communication could be avoided by adopting Cellular Vehicle-to-Everything (C-V2X) technology with the possibility to re-use the existing mobile network infrastructure. More and more, with the emergence of Software Defined Networks, the flexibility and the programmability of the network have not only impacted the design of new vehicular network architectures but also the implementation of V2X services in future intelligent transportation systems. In this paper, we define the concepts that help evaluate software-defined-based vehicular network systems in the literature based on their modeling and implementation schemes. We first overview the current studies available in the literature on C-V2X technology in support of V2X applications. We then present the different architectures and their underlying system models for LTE-V2X communications. We later describe the key ideas of software-defined networks and their concepts for V2X services. Lastly, we provide a comparative analysis of existing SDN-based vehicular network system grouped according to their modeling and simulation concepts. We provide a discussion and highlight vehicular ad-hoc networks’ challenges handled by SDN-based vehicular networks.


2019 ◽  
Vol 32 (3) ◽  
pp. 463-478
Author(s):  
Folayo Aina ◽  
Sufian Yousef ◽  
Opeyemi Osanaiye

The widespread of wireless mobile network have increased the demand for its applications. Providing a reliable QoS in wireless medium, especially mobile ad-hoc network (MANET), is quite challenging and remains an ongoing research trend. One of the key issues of MANET is its inability to accurately predict the needed and available resources to avoid interference with already transmitting traffic flow. In this work, we propose a resource allocation and admission control (RAAC) solution. RAAC is an admission control scheme that estimates the available bandwidth needed within a network, using a robust and accurate resource estimation technique. Simulation results obtained show that our proposed scheme for MANET can efficiently estimate the available bandwidth and outperforms other existing approaches for admission control with bandwidth estimation.


Author(s):  
Ehsun Behravesh ◽  
Andrew Butler

This paper explores recent improvements in 802.11p multi-channel protocol in vehicular ad-hoc networks. We provide definitions for a vehicular network and explore the operation of 802.11 within a vehicular network. We also study on areas of improvements of this protocol and briefly discuss on advantages and disadvantages of each solution.Various solutions that various researchers have done to improve the 802.11p multi-channel protocol as it applies to vehicular networks are explored in this paper.


Author(s):  
Muhammad A. Javed ◽  
Jamil Y. Khan

Vehicular ad hoc networks (VANETs) are expected to be used for the dissemination of emergency warning messages on the roads. The emergency warning messages such as post crash warning notification would require an efficient multi hop broadcast scheme to notify all the vehicles within a particular area about the emergency. Such emergency warning applications have low delay and transmission overhead requirements to effectively transmit the emergency notification. In this paper, an adaptive distance based backoff scheme is presented for efficient dissemination of warning messages on the road. The proposed scheme adaptively selects the furthest vehicle as the next forwarder of the emergency message based on channel conditions. The detailed performance figures of the protocol are presented in the paper using simulations in the OPNET network simulator. The proposed protocol introduces lower packet delay and broadcast overhead as compared to standard packet broadcasting protocols for vehicular networks.


Author(s):  
Nitin Maslekar ◽  
Mounir Boussedjra ◽  
Houda Labiod ◽  
Joseph Mouzna

Vehicular ad hoc networks (VANETs) represent an important component necessary to develop Intelligent Transportation Systems. Recent advances in communications systems have created significant opportunities for a wide variety of applications and services to be implement in vehicles. Most of these applications require a certain dissemination performance to work satisfactorily. Although a variety of optimizations are possible, the basic idea for any dissemination scheme is to facilitate the acquisition of the knowledge about the surrounding vehicles. However, the dynamic nature of vehicular networks makes it difficult to achieve an effective dissemination among vehicles. This chapter provides an overview on those challenges and presents various approaches to disseminate data in vehicular networks.


2020 ◽  
Vol 12 (12) ◽  
pp. 234
Author(s):  
Ricardo Chaves ◽  
Carlos Senna ◽  
Miguel Luís ◽  
Susana Sargento ◽  
André Moreira ◽  
...  

The development of protocols for mobile networks, especially for vehicular ad-hoc networks (VANETs), presents great challenges in terms of testing in real conditions. Using a production network for testing communication protocols may not be feasible, and the use of small networks does not meet the requirements for mobility and scale found in real networks. The alternative is to use simulators and emulators, but vehicular network simulators do not meet all the requirements for effective testing. Aspects closely linked to the behaviour of the network nodes (mobility, radio communication capabilities, etc.) are particularly important in mobile networks, where a delay tolerance capability is desired. This paper proposes a distributed emulator, EmuCD, where each network node is built in a container that consumes a data trace that defines the node’s mobility and connectivity in a real network (but also allowing the use of data from simulated networks). The emulated nodes interact directly with the container’s operating system, updating the network conditions at each step of the emulation. In this way, our emulator allows the development and testing of protocols, without any relation to the emulator, whose code is directly portable to any hardware without requiring changes or customizations. Using the facilities of our emulator, we tested InterPlanetary File System (IPFS), Sprinkler and BitTorrent content dissemination protocols with real mobility and connectivity data from a real vehicular network. The tests with a real VANET and with the emulator have shown that, under similar conditions, EmuCD performs closely to the real VANET, only lacking in the finer details that are extremely hard to emulate, such as varying loads in the hardware.


Author(s):  
Muhammad A. Javed ◽  
Jamil Y. Khan

Vehicular ad hoc networks (VANETs) are expected to be used for the dissemination of emergency warning messages on the roads. The emergency warning messages such as post crash warning notification would require an efficient multi hop broadcast scheme to notify all the vehicles within a particular area about the emergency. Such emergency warning applications have low delay and transmission overhead requirements to effectively transmit the emergency notification. In this paper, an adaptive distance based backoff scheme is presented for efficient dissemination of warning messages on the road. The proposed scheme adaptively selects the furthest vehicle as the next forwarder of the emergency message based on channel conditions. The detailed performance figures of the protocol are presented in the paper using simulations in the OPNET network simulator. The proposed protocol introduces lower packet delay and broadcast overhead as compared to standard packet broadcasting protocols for vehicular networks.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Sara Najafzadeh ◽  
Norafida Binti Ithnin ◽  
Shukor Abd Razak

This paper starts with an overview of vehicular ad hoc networks (VANETs) and their characteristics. Then this paper reviews diverse applications of VANETs and the requirements of these applications. In addition it reviews VANETs standards, different broadcasting presented in a variety of studies, and also associated issues with data dissemination in connected and fragmented vehicular networks to solve broadcast storm problem and temporary disconnected VANETs. The discussion will be about the encountered challenges and presented solutions with respect to the related issues, based on the literature and strength and weakness of each protocol.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
José Santa ◽  
Andrés Muñoz ◽  
Antonio F. Gómez-Skarmeta

Current vehicular networks are developed upon commercial solutions based on cellular networks (CNs) or vehicular ad-hoc networks (VANETs), both present in numerous research proposals. Current approximations are not enough to cover the communication necessities of several applications at the same time, and they are not suitable for future vehicular pervasive services. The vehicular network presented in this paper fills the existent gap between solutions lacking in flexibility, mainly supported by an infrastructure deployment, and those highly local and distributed, such as sole-VANET approximations. In this manner, an overlay communication platform which can work over the CN basis has been designed and developed. This architecture is complemented by an additional support of an information system located at the infrastructure side. Moreover, since most of the information received from current notification services is not relevant for the driver, an additional subsystem has been devised to provide adapted information to users. This has been carried out by means of an ontology model which represents users' preferences and contextual information. Finally, using a whole prototype of the telematic platform, the performance of this interring process has been evaluated to point out its impact on the system operation.


Sign in / Sign up

Export Citation Format

Share Document