scholarly journals The Effects of Watermelon Rind Flour on the Functional and Proximate Properties of Wheat Bread

2020 ◽  
Vol 45 (5) ◽  
Author(s):  
C. Imoisi ◽  
J.U. Iyasele ◽  
U.C. Michael ◽  
E.E. Imhontu

The present study was undertaken to develop bread from composite flours. Composite flours were prepared by blending wheat flour with watermelon rind flour in ratios of 100:0 (AB1), 90:10 (AB2), 80:20 (AB3), 70:30 (AB4) and 60:40 (AB5), respectively. This study was carried out to ascertain the effects of watermelon rind flour at different replacement levels (0%, 10%, 20%, 30%, 40%) on the proximate and functional properties of composite wheat bread. The results of proximate properties determination on wheat/flour blend gave low bulk densities of 0.54g/cm3 to 0.60g/cm3, high water absorption capacity of 2.389 to 3.044 g/g as well as a high swelling capacity of 5.764 to 7.610 g/g and a low oil absorption capacity of 1.608 to 2.150 g/g. The results of proximate composition of composite bread revealed an increase in % protein, % carbohydrate and % ash from 15.7% to 18.8%, 47.1% to 52.0% and 0.6% to 1.2% respectively and a subsequent decrease in % fat from 18.4% to 13.8. There was a reduction in energy density for composite bread. The functional properties of composite flours such as swelling capacity, water absorption capacity, oil absorption capacity and bulk density were increased with increase in the incorporation of watermelon rind flour with wheat flour. Thus, the results indicate that by incorporating watermelon rind flour, it is possible to enhance the nutritional quality, chemical and functional properties of bread.

2019 ◽  
Author(s):  
Chem Int

Bread is popular around the world and is one of the world’s oldest foods. Bread is usually made from common wheat-flour dough. Till date most people are not familiar with other types of bread apart from that made from 100% wheat flour. When a part of wheat flour is replaced with flours from other food sources (yam, cassava, etc) the wheat gluten is automatically reduced. This study aimed at re-examining the approval of ten percent (10%) cassava flour inclusion in bread baking in Nigeria and evaluating higher % substitutions, with a view to increasing cassava carrying capacity for producing acceptable bread. The water absorption capacity (WAC) of wheat, cassava and composite flours ranged from 62.7 to 79% while oil absorption capacity (OAC) ranged from 4.5 to 72%. As cassava percent inclusion increased both WAC and OAC increased. Bread loaves produced from 10-20% inclusions without egg white had sensory scores of 3.2 to 3.9 and were significantly (p < 0.05) better than 25-30% wheat cassava composite bread loaves. In all sensory attributes, 10-20% cassava inclusion, with added egg white, produced bread loaves which were as good as 100% wheat bread. In terms of taste, colour, odour and texture 25-30% composite bread loaves had identical sensory values. This study showed that bread of acceptable quality can be produced from wheat flour substituted with up to 30% cassava flour.


2020 ◽  
pp. 40-48
Author(s):  
J. A. Ayo ◽  
D. M. Atondo

The functional, sensory and cooking characteristics of noodles from blends of Acha-tigernut composite flour were investigated. The flour blends and noodles produced were analyzed for functional properties and cooking characteristics. The tiger nut flour was substituted into acha flour at 5, 10, 15 and 20% to produce Acha-tigernut composite flour which was used with other ingredients (salt and powdered ginger) to produce acha-tigernut based noodles. The functional properties of the flour, sensory and cooking characteristics of the noodles produced were determined. The water absorption capacity and swelling capacity increased from 210.59 to 215.53 (g/g) and 524.43 to 586.57, respectively with increase in tigernut flour. While oil absorption, solubility and bulk density decreases from 209.80 to 192.72 (g/g), 10.17 to 5.19 and 0.79 to 0.61 (g/ml) respectively. The swelling capacity ranged from 524.43 to 586.57 (%) with an increase in tigernut flour. The final viscosity of the samples was found to range from 2833.00to 2201.00 (m2/s). The peak properties decreased from 2680.67 to 1580.33 (RVU). The pasting temperature increases from 82.47to 87.57°C. The addition of tigernut decreased the trough, breakdown and peak time from 1730.67 to 1205.67, 985.67 to 434.67, and 5.84 to 5.71 RVU, respectively. The average mean scores for colour decreased from 6.95 to -6.30(%) While that of taste, flavor, texture and general acceptability increased from 5.55 to 6.60, 5.95 to 6.85 (%), 5.95 to 6.44 (%) and 6.70 to 6.83 (%), respectively, as the percentage of tigernut increased.


2019 ◽  
Vol 3 (2) ◽  
pp. 39
Author(s):  
Peter-Ikechukwu, A. ◽  
Ibeabuchi, J.C. ◽  
Eluchie, C.N. ◽  
Agunwa, I.M. ◽  
Aneke, E.J. ◽  
...  

<p><em>Functional properties of sausage rolls made from cocoyam and wheat flour enriched with soybean flour was studied. Cocoyam cormels and soybean were processed into flour, which were later used to formulate composite flour blends, with wheat flour in the ratio of: 90:10:0 (control 1), 80:10:10, 70:10:20, 60:10:40, 50:10:30, respectively, while 0:10:90 served as control 2. The result of the functional properties showed variation in behavior. There were no significant difference (p?0.05) in pH, bulk density, swelling index, foam capacity and emulsion capacity of the flour samples while significant difference (p?0.05) existed in water absorption capacity, oil absorption capacity and wettability.</em></p>


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rehab F.M. Ali ◽  
Sami A. Althwab ◽  
Hani A. Alfheeaid ◽  
Ayman Mohammed El-Anany ◽  
Raghad M. Alhomaid ◽  
...  

PurposeSoaked–dehulled moth bean seed (SDMBS) powder was incorporated into wheat flour and the paper aims to investigate its effects on the nutritional and quality properties of composite bread.Design/methodology/approachDifferent ratios of SDMBS powder (0%–12.5%) were mixed into wheat flour to prepare composite bread. Proximate composition, mineral content and functional properties of SDMBS powder and wheat flour were studied. The composite bread samples were assayed for proximate composition, mineral nutrients, amino acid composition, physical characteristics as well as sensorial properties.FindingsProtein and ash contents of SDMBS powder were found to be 2.15 and 5.69 fold higher than wheat flour. Water absorption capacity (WAC), oil absorption capacity (OAC), (FC) and emulsion activity (EA) values of SDMBS powder were also 1.63, 1.78, 4.43 and 1.58 times higher than wheat flour, respectively. The inclusion of different levels of SDMBS powder into wheat flour significantly (p = 0.05) increased the functional properties of composite flours. Bread samples fortified with SDMBS powder exhibited higher values of essential amino acids than the recommendations of World Health Organization/Food and Agriculture Organization/United Nations University (2007). The bread samples containing 10% and 12.5% of SDMBS powder provided 39.23% and 41.15% of the recommended lysine level, respectively. The addition of a higher proportion of SDMBS powder into wheat flour gradually increased the protein and ash contents of the bread samples. Control sample without SDMBS powder (0%) and samples fortified containing 2.5% and 5% of SDMBS powder received the highest scores of overall acceptance, whereas the bread sample with the highest SDMBS powder (12.5%) content received the lowest scores.Research limitations/implicationsThe main findings of the current investigation indicated that the addition of 2.5–5% of SDMBS powder into wheat flour enhanced the nutritional and quality characteristics of wheat bread.Originality/valueSDMBS powder could be incorporated into refined wheat bread to achieve functional bread with significantly higher protein content.


2020 ◽  
pp. 41-57
Author(s):  
David T. Ishola ◽  
Mathew K. Bolade

This study evaluated flour blends from Wheat, Pearl millet and Andrographis paniculata leaf for functional properties and pasting characteristics profiling. The functional properties such as solubility, gelling capacity, water absorption capacity (WAC), Oil absorption capacity (OAC), Bulk density, foaming capacity and stability and swelling capacity and the pasting characteristics were studied. The inclusion of A. paniculata leaf flour in the blends revealed a significant general increase in water absorption capacity, oil absorption capacity, swelling capacity, and bulk density. However, a general decrease in the foaming capacity, solubility, and least gelation was observed as the inclusion of A. paniculata leaf flour increased. The pasting properties of WPMF (flour blend without the inclusion of A. paniculata leaf flour) exhibited the following values: peak viscosity (658 RVU), breakdown (372 RVU), final viscosity (923 RVU), setback (637 RVU), peak time (5.07 min), and pasting temperature (84.8oC). The inclusion of A. paniculata leaf flour in the blends led to a significant general decrease in all the pasting factors. The inclusion of A. paniculata had a significant effect on the functional and pasting properties of wheat-pearl millet based flour.


2020 ◽  
Vol 45 (3) ◽  
Author(s):  
K. O. Soetan ◽  
A. A. Adeola

Underutilized and neglected legumes have numerous nutritional potentials with great contributions to food security but they are usually excluded from research and development agenda. This study evaluates the nutritional and functional properties of six different underutilized and neglected legumes; Lima bean (LB) (Phaseolus lunatus) (2006-009), Bambara groundnut (BG) (Vigna subterranea) (TVSU- 1482), winged bean (WB) (Psophocarpus tetragonolobus) (Tpt-48), jack bean (JB) (Canavalia ensiformis) (Tce-4), sword bean (SB) (Canavalia gladiata) (Tcg-4) and African yam bean (AYB) (Sphenostylis stenocarpa) (TSS-95) from the Genetic Resources Unit (GRU), International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria. Nutritional and functional properties were evaluated using proximate composition, mineral analyses and functional properties like bulk density, water absorption capacity, oil absorption capacity, emulsion capacity and dispersibility. All the procedures were carried out using standard protocols. Statistical analysis was done using descriptive statistics. Results of proximate analysis showed that crude protein ranged from18.88 0.15%(WB) to 26.60±0.14%(AYB), crude fat ranged from 1.84 0.02% (JB) to 6.39 0.03% (BG), crude fibre ranged from 3.70 ±0.00% (AYB) to 5.04 0.03% (SB), ash ranged from 3.10 ± 0.14% (AYB) to 4.66 0.02% (LB), nitrogen free extract ranged from 55.60 0.04% (SB) to 62.97 0.12% (WB), moisture content ranged from 5.75 0.48% (AYB) to 10.77 0.03% (JB), dry matter ranged from 89.23 0.03% (JB) to 94.25 ± 0.488% (AYB) and gross energy ranged from 4.39 0.003 kcal/g (SB) to 4.66 0.00 (BG). Mineral content results revealed that calcium varied from 0.14 0.000% (LB) to 0.23 0.0003% (AYB), phosphorus varied from 0.20 0.0001% (AYB) to 0.38 0.00% (BG), sodium varied from 0.12 0.00% (LB and WB) to 0.35 0.0006% (AYB), potassium varied from 0.69 0.00% (LB) to 1.12 0.00% (BG), magnesium varied from 0.15 0.0002% (AYB) to 0.27 0.000% (BG) and iron varied from 44.84 0.03 (mg/g) (WB) to 80.98 0.0007(mg/g) (AYB). Results of functional properties showed that bulk density ranged from 0.45±0.04 g/mL (WB) to 0.77±0.08 g/mL (SB), water absorption capacity ranged from 168.33±0.03 g/100g (LB) to 183.62±0.01 g/100g (SB), oil absorption capacity ranged from 146.54 ±0.02 g/100g (LB) to 161.55±0.02 g/100g (JB), emulsion capacity ranged from 79.67 ±0.02 g/100g (LB) to 89.46±0.02 g/100g (SB) and dispersibility ranged from81.0±1.41%(SB) to 86.5±0.71% (BG). The study concluded that all the underutilized legumes have varying nutritional and functional properties, which should be exploited for nutritional benefits and industrial applications, as a solution to the problem of food shortage, especially in the developing countries.


Author(s):  
Nikhil D. Solanke Pradeep P. Thorat ◽  
Jayashri Ughade

The purpose of this study is to determine the quality of chickpea and black gram flour used in preparation of traditional products. As the study of physical properties of flour, both chickpea as well as black gram flour shows higher in bulk density. Water absorption index show lower level of both chickpea as well as black gram flour and water solubility index shows both chickpea as well as black gram flour in between bulk density and water absorption index. While the functional properties of flour, water absorption capacity lower for chickpea flour but higher oil absorption capacity. Higher the water absorption capacity for black gram flour and lower the oil absorption capacity for black gram. This concluded that bulk density for both chickpea flour and black gram is highest while oil absorption capacity is lower in both chickpea flour and black gram flours.


2020 ◽  
Vol 4 (2) ◽  
pp. 300-307
Author(s):  
J. Ndife ◽  
K. S. Abasiekong ◽  
B. Nweke ◽  
A. Linus-Chibuezeh ◽  
V. C. Ezeocha

Most snacks are prepared from basically cereal flours which are nutritionally inadequate. There is the need to complement the nutrient content of these snacks by varying the food sources. Chin-chin snacks were produced from composite flours of Maize, soybean and OFSP with the following formation; sample A (50%: 25%: 25%), B (25%: 25%: 50%), C (25%: 50%: 25%), D (0%: 50%: 50%) and E (50%: 50%: 0%). Wheat flour (100%) served as the control F. The flour bends were analysed for functional properties while the chin-chin snacks were analysed for their nutrient and sensory qualities. The result of functional properties of the flours showed that bulk density of wheat flour (F) was the highest (0.746 g/ml). OFSP flour enhanced the water absorption capacity of the flour blends. Flour blends with soybean recorded higher values in foam capacity (11.20 - 22.55%). In proximate composition, the moisture was low (3.80 – 4.80%) in the chin-chin. Higher fibre content (2.60 - 4.20%) was obtained in samples containing higher proportion (50%) of OFSP. Samples D (19.38%) and C (18.80%) with higher soybean, recorded higher protein values. The mineral and the vitamin contents of snacks from composite flours were higher than that of the control F. Vitamin B1, B2, B3 and β-carotene contents of the snacks were enhanced by OFSP. The sensory evaluation showed preference for snack F (100% wheat flour) followed by snack A (50% maize, 25% soybean and 25% OFSP). However, improved nutrient dense chin-chin snacks were produced from the composite flours.


2021 ◽  
pp. 13-22
Author(s):  
Ihemeje Austin ◽  
Akujobi, Ijeoma Chidinma ◽  
Kabuo Canice Obioma Obinna

Objective: The study aimed at production and quality evaluation of composite flours and cookies from cassava (Maniholt esculenta) -grey speckled palapye cowpea (Vigna sinensis). Methods: Flour was respectively produced from cassava and palapye cowpea. The flours of cassava and palapye cowpea were mixed in the ratios of 100:0, 90:10, 80:20 and 70:30 respectively before being analyzed for antinutrient and functional properties. Cookies were produced from the flours and then evaluated for their respective nutrient and organoleptic attributes.  Data was analysed using using spss version 21.0. Results: The anti-nutrient concentration ranged from 0.83 to 1.25% (phytate), 0.07 to 0.19% (phenol), 0.12 to 0.17% (tannin), 0.09 to 0.21 Tiu/mg (trypsin inhibitor) and 0.28 to 0.88 mg/kg (hydrogen cyanide). The functional properties were found to be within 0.47 to 0.58 g/ml (bulk density), 1.62 to 2.04 g/g (capacity), 1.58% to 2.06 g/g (oil absorption capacity), 1.26 to 1.74 g/ml (swelling capacity) and 10.47 to 14.86% (foaming capacity). Proximate composition of the cookies samples showed 9.43 to 10.77% (moisture), 2.03 to 6.88% (protein), 1.03 to 1.91% (fat), 1.24 to 2.55% (ash), 3.22 to 4.26% (fibre) and 76.01 to 80.82% (carbohydrate).  The sensory scores of the cookies ranged from 6.2 to 7.3 on the hedonic scale. Conclusion: The cassava-grey speckled cowpea flour proved satisfactory in cookies production and could also serve well in formulations for other food products.


Food Research ◽  
2020 ◽  
Vol 4 (S2) ◽  
pp. 24-30
Author(s):  
N. Zainol ◽  
S. Subramanian ◽  
A.S. Adnan ◽  
N.H. Zulkifli ◽  
A.A.M. Zain ◽  
...  

The market of composite flour is growing as consumer nowadays choosing a healthy diet as personal preference. The suitability of the composite flour for use as intermediate or finish food ingredients highly depends on its physicochemical properties and its nutritional value. In this study, four types of local fruit crops (particularly their seeds) namely rambutan, cempedak, durian and nangka were dried and ground into powder form. The physicochemical properties such as bulk density, pH, water absorption capacity (WAC), oil absorption capacity (OAC), foam stability (FS), foam capacity (FC) as well as gelatinization properties of these composite flour were studied. Mineral content and heavy metal analytes were also determined. Results for bulk density from the least to the higher amount was 0.54±0.00 g/mL, 0.57±0.00 g/mL, 0.58±0.01 g/mL, 0.66±0.00 g/mL , 0.70±0.00 g/mL and 0.72±0.00 g/mL for rambutan flour, cempedak flour, tapioca flour, nangka flour, wheat flour and durian flour, respectively. Both cempedak flour and nangka flour showed the lowest pH value (5.72±0.01, 5.73±0.00), followed by rambutan flour and durian flour (6.67±0.00, 6.90±0.00) which similar to that tapioca flour and wheat flour (6.65±0.1, 6.08±0.0), respectively. Rambutan flour, cempedak flour and wheat flours showed the highest value in% of foam stability meanwhile these composite flours showed the lowest value in% of foam capacity. Results for water absorption capacity (WAC) and oil absorption capacity (OAC) in a range of 6% to 42% and 8% to 12% respectively, however, durian flour obtained the highest value for WAC while the value for OAC was the lowest. All of the composite flour possesses gelling properties at 13% concentration except for cempedak flour which completely gels at 20% of concentration. Rambutan flour showed the highest mineral analyte particularly in Zinc (107.19±0.17) and Copper (14.22±0.27) followed by nangka flour [Zinc (64.20±0.32) and Copper (10.40±0.12)] and durian flour [Zinc (52.38±0.42) and Copper (7.97±0.05)]. Level of heavy metal toxicity was under risk for all types of composite flour.


Sign in / Sign up

Export Citation Format

Share Document