scholarly journals Catching the First Wave in the Pandemic: A Retrospective Evaluation of Chest CT Images for COVID-19

2021 ◽  
Vol 2 (3) ◽  
pp. 67-74
Author(s):  
Mehmet Tahtabaşı ◽  
Ergin Karaman ◽  
Yasin Akın ◽  
Osman Konukoğlu ◽  
Nihat Kılıçaslan ◽  
...  
2020 ◽  
Author(s):  
Jinseok Lee

BACKGROUND The coronavirus disease (COVID-19) has explosively spread worldwide since the beginning of 2020. According to a multinational consensus statement from the Fleischner Society, computed tomography (CT) can be used as a relevant screening tool owing to its higher sensitivity for detecting early pneumonic changes. However, physicians are extremely busy fighting COVID-19 in this era of worldwide crisis. Thus, it is crucial to accelerate the development of an artificial intelligence (AI) diagnostic tool to support physicians. OBJECTIVE We aimed to quickly develop an AI technique to diagnose COVID-19 pneumonia and differentiate it from non-COVID pneumonia and non-pneumonia diseases on CT. METHODS A simple 2D deep learning framework, named fast-track COVID-19 classification network (FCONet), was developed to diagnose COVID-19 pneumonia based on a single chest CT image. FCONet was developed by transfer learning, using one of the four state-of-art pre-trained deep learning models (VGG16, ResNet50, InceptionV3, or Xception) as a backbone. For training and testing of FCONet, we collected 3,993 chest CT images of patients with COVID-19 pneumonia, other pneumonia, and non-pneumonia diseases from Wonkwang University Hospital, Chonnam National University Hospital, and the Italian Society of Medical and Interventional Radiology public database. These CT images were split into a training and a testing set at a ratio of 8:2. For the test dataset, the diagnostic performance to diagnose COVID-19 pneumonia was compared among the four pre-trained FCONet models. In addition, we tested the FCONet models on an additional external testing dataset extracted from the embedded low-quality chest CT images of COVID-19 pneumonia in recently published papers. RESULTS Of the four pre-trained models of FCONet, the ResNet50 showed excellent diagnostic performance (sensitivity 99.58%, specificity 100%, and accuracy 99.87%) and outperformed the other three pre-trained models in testing dataset. In additional external test dataset using low-quality CT images, the detection accuracy of the ResNet50 model was the highest (96.97%), followed by Xception, InceptionV3, and VGG16 (90.71%, 89.38%, and 87.12%, respectively). CONCLUSIONS The FCONet, a simple 2D deep learning framework based on a single chest CT image, provides excellent diagnostic performance in detecting COVID-19 pneumonia. Based on our testing dataset, the ResNet50-based FCONet might be the best model, as it outperformed other FCONet models based on VGG16, Xception, and InceptionV3.


2018 ◽  
Vol 8 (3) ◽  
pp. 485-493 ◽  
Author(s):  
Shouren Lan ◽  
Xin Liu ◽  
Lisheng Wang ◽  
Chaoyi Cui

2021 ◽  
Vol 11 ◽  
Author(s):  
He Sui ◽  
Ruhang Ma ◽  
Lin Liu ◽  
Yaozong Gao ◽  
Wenhai Zhang ◽  
...  

ObjectiveTo develop a deep learning-based model using esophageal thickness to detect esophageal cancer from unenhanced chest CT images.MethodsWe retrospectively identified 141 patients with esophageal cancer and 273 patients negative for esophageal cancer (at the time of imaging) for model training. Unenhanced chest CT images were collected and used to build a convolutional neural network (CNN) model for diagnosing esophageal cancer. The CNN is a VB-Net segmentation network that segments the esophagus and automatically quantifies the thickness of the esophageal wall and detect positions of esophageal lesions. To validate this model, 52 false negatives and 48 normal cases were collected further as the second dataset. The average performance of three radiologists and that of the same radiologists aided by the model were compared.ResultsThe sensitivity and specificity of the esophageal cancer detection model were 88.8% and 90.9%, respectively, for the validation dataset set. Of the 52 missed esophageal cancer cases and the 48 normal cases, the sensitivity, specificity, and accuracy of the deep learning esophageal cancer detection model were 69%, 61%, and 65%, respectively. The independent results of the radiologists had a sensitivity of 25%, 31%, and 27%; specificity of 78%, 75%, and 75%; and accuracy of 53%, 54%, and 53%. With the aid of the model, the results of the radiologists were improved to a sensitivity of 77%, 81%, and 75%; specificity of 75%, 74%, and 74%; and accuracy of 76%, 77%, and 75%, respectively.ConclusionsDeep learning-based model can effectively detect esophageal cancer in unenhanced chest CT scans to improve the incidental detection of esophageal cancer.


2021 ◽  
Author(s):  
Indrajeet Kumar ◽  
Jyoti Rawat

Abstract The manual diagnostic tests performed in laboratories for pandemic disease such as COVID19 is time-consuming, requires skills and expertise of the performer to yield accurate results. Moreover, it is very cost ineffective as the cost of test kits is high and also requires well-equipped labs to conduct them. Thus, other means of diagnosing the patients with presence of SARS-COV2 (the virus responsible for COVID19) must be explored. A radiography method like chest CT images is one such means that can be utilized for diagnosis of COVID19. The radio-graphical changes observed in CT images of COVID19 patient helps in developing a deep learning-based method for extraction of graphical features which are then used for automated diagnosis of the disease ahead of laboratory-based testing. The proposed work suggests an Artificial Intelligence (AI) based technique for rapid diagnosis of COVID19 from given volumetric CT images of patient’s chest by extracting its visual features and then using these features in the deep learning module. The proposed convolutional neural network is deployed for classifying the infectious and non-infectious SARS-COV2 subjects. The proposed network utilizes 746 chests scanned CT images of which 349 images belong to COVID19 positive cases while remaining 397 belong negative cases of COVID19. The extensive experiment has been completed with the accuracy of 98.4 %, sensitivity of 98.5 %, the specificity of 98.3 %, the precision of 97.1 %, F1score of 97.8 %. The obtained result shows the outstanding performance for classification of infectious and non-infectious for COVID19 cases.


Author(s):  
Houssam BENBRAHIM ◽  
Hanaa HACHIMI ◽  
Aouatif AMINE

The SARS-CoV-2 (COVID-19) has propagated rapidly around the world, and it became a global pandemic. It has generated a catastrophic effect on public health. Thus, it is crucial to discover positive cases as early as possible to treat touched patients fastly. Chest CT is one of the methods that play a significant role in diagnosing 2019-nCoV acute respiratory disease. The implementation of advanced deep learning techniques combined with radiological imaging can be helpful for the precise detection of the novel coronavirus. It can also be assistive to surmount the difficult situation of the lack of medical skills and specialized doctors in remote regions. This paper presented Deep Transfer Learning Pipelines with Apache Spark and KerasTensorFlow combined with the Logistic Regression algorithm for automatic COVID-19 detection in chest CT images, using Convolutional Neural Network (CNN) based models VGG16, VGG19, and Xception. Our model produced a classification accuracy of 85.64, 84.25, and 82.87 %, respectively, for VGG16, VGG19, and Xception. HIGHLIGHTS Deep Transfer Learning Pipelines with Apache Spark and Keras TensorFlow combined with Logistic Regression using CT images to screen for Corona Virus Disease (COVID-19)       Automatic detection of  COVID-19 in chest CT images Convolutional Neural Network (CNN) based models VGG16, VGG19, and Xception to predict COVID-19 in Computed Tomography image GRAPHICAL ABSTRACT


Sign in / Sign up

Export Citation Format

Share Document