Mathematical Simulation Analysis of optimal throw Path Detection for Shot Put Athletes

2020 ◽  
Vol 29 (4) ◽  
Author(s):  
Zheng Wei
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wenbing Zhu ◽  
Hafnida Hasan

Abstract Objective To study the mathematical simulation analysis of shot-putter throwing optimal path. Methods Shot put was simplified as a parabolic motion of a particle, the corresponding mathematical model was established, and the mathematical relationship between the throwing distance and the initial velocity of shot put, the shooting Angle and the shooting height was defined. Results The fitting formula between shooting speed and shooting Angle was obtained by using the fitting method, and the quantitative relationship between them and the ideal shooting Angle was identified. Conclusion The mathematical principle of shot put is revealed through the process of building a model from simple to complex. However, there are still many problems to be solved, among which the height problem is a complex one. At the present level, it is not possible to find a reasonable height, because it involves many factors. However, the development of grey mathematics will provide a beneficial attempt for it to establish a reasonable and scientific model.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-36
Author(s):  
Robert Bucki ◽  
Petr Suchánek

The article focuses on one of the current problems of manufacturing systems which consist of individual machines equipped with dedicated tools that are replaced when they are worn out. It is assumed that the machines are located within the reach of the robotic arm which carries out transport operations of semifinished products to designated production machines and storage containers in accordance with the production time period. The aim is to find such an arrangement of production activities, respectively, production paths for a given set of orders that will be effective from the time and cost point of view. Moreover, the whole issue is solved with regard to possible failures of individual stands, overfilling of some tanks, etc. The theory and practice of creating and using simulators as tools for the definition and verification of production plans are used to solve this issue. The starting point is the creation of a mathematical simulation model with the necessary but acceptable degree of simplification. The mathematical simulation model is tested on sample data in a feasibility study to perform a detailed usability analysis of the model. The output of the article is a simulation model for which, based on the analysis of simulation results, patterns of possible use in specific types of enterprises are given.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Baocong Sun

Abstract In order to consider many uncertain factors in the process of shot-put, a fuzzy optimisation model of shot-put is proposed. With the help of fuzzy anthropometric data and strength data, the model calculates the fuzzy solution set of the athlete's best throwing mode and throwing distance with a known probability distribution, which reflects the actual process of shot throwing better than the non-fuzzy optimisation model. Then, using MATLAB6 software, the program design of the model solving and the user interface of optimisation software are developed, which realises fast calculation and good user interaction function. Finally, the actual measurement data of university shot-putters are used to verify the feasibility and effectiveness of the fuzzy optimisation model.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


Sign in / Sign up

Export Citation Format

Share Document