Weight Coefficient Setting of Current Predictive Control for Permanent Magnet Synchronous Machine using HPSO

2021 ◽  
Vol 69 (4) ◽  
pp. 17-25
Author(s):  
Yinhang Luo ◽  
◽  
Fengyang Gao ◽  
Kaiwen Yang ◽  
◽  
...  

Aiming at the problem of multi-objective weight coefficient setting of model predictive control (MPC) for permanent magnet synchronous motor (PMSM), a hybrid particle swarm optimization (HPSO) algorithm with low computational complexity of fitness value is proposed to realize the self-setting of weight coefficient of cost function. In the proposed strategy, good particles update velocity and position through particle swarm optimization (PSO) algorithm, while bad particles not only do the same but generate the offspring by cross and mutation, and then the worse offspring will be replaced by their extremum individuals. It is faster that the adaptive cross and mutation rate makes the offspring get closer to the good particles, and it increases the diversity of particles without destroying the good particles. Experimental results show that compared with other optimization algorithms, the proposed algorithm. Firstly, is more inclined to escape from the local optimum. Secondly, it has higher search accuracy and faster convergence speed. Moreover, with setting weight coefficient, the system speed regulation time is shortened, the current total harmonic distortion (THD) is reduced significantly, and the switching frequency is effectively reduced without affecting the output power quality.

2018 ◽  
Vol 15 (2) ◽  
pp. 1-20 ◽  
Author(s):  
S. Bharath Bhushan ◽  
Pradeep C. H. Reddy

Cloud is evolving as an outstanding platform to deliver cloud services on a pay-as-you-go basis. The selection and composition of cloud services based on QoS criteria is formulated as NP hard optimization problem. Traditionally, many optimization techniques are applied to solve it, but it suffers from slow convergence speed, large number of calculations, and falling into local optimum. This article proposes a hybrid particle swarm optimization (HPSO) technique that combines particle swarm optimization (PSO) and fruit fly (FOA) to perform the evolutionary search process. The following determines a pareto optimal service set which is non-dominated solution set as input to the proposed HPSO. In the proposed HPSO, the parameters such as position and velocity are redefined, and while updating, the smell operator of fruit fly is used to overcome the prematurity of PSO. The FOA enhances the convergence speed with good fitness value. The experimental results show that the proposed HPSO outperforms the simple particle swarm optimization in terms of fitness value, execution time, and error rate.


2021 ◽  
Vol 11 (20) ◽  
pp. 9772
Author(s):  
Xueli Shen ◽  
Daniel C. Ihenacho

The method of searching for an optimal solution inspired by nature is referred to as particle swarm optimization. Differential evolution is a simple but effective EA for global optimization since it has demonstrated strong convergence qualities and is relatively straightforward to comprehend. The primary concerns of design engineers are that the traditional technique used in the design process of a gas cyclone utilizes complex mathematical formulas and a sensitivity approach to obtain relevant optimal design parameters. The motivation of this research effort is based on the desire to simplify complex mathematical models and the sensitivity approach for gas cyclone design with the use of an objective function, which is of the minimization type. The process makes use of the initial population generated by the DE algorithm, and the stopping criterion of DE is set as the fitness value. When the fitness value is not less than the current global best, the DE population is taken over by PSO. For each iteration, the new velocity and position are updated in every generation until the optimal solution is achieved. When using PSO independently, the adoption of a hybridised particle swarm optimization method for the design of an optimum gas cyclone produced better results, with an overall efficiency of 0.70, and with a low cost at the rate of 230 cost/second.


2019 ◽  
Vol 18 (03) ◽  
pp. 833-866 ◽  
Author(s):  
Mi Li ◽  
Huan Chen ◽  
Xiaodong Wang ◽  
Ning Zhong ◽  
Shengfu Lu

The particle swarm optimization (PSO) algorithm is simple to implement and converges quickly, but it easily falls into a local optimum; on the one hand, it lacks the ability to balance global exploration and local exploitation of the population, and on the other hand, the population lacks diversity. To solve these problems, this paper proposes an improved adaptive inertia weight particle swarm optimization (AIWPSO) algorithm. The AIWPSO algorithm includes two strategies: (1) An inertia weight adjustment method based on the optimal fitness value of individual particles is proposed, so that different particles have different inertia weights. This method increases the diversity of inertia weights and is conducive to balancing the capabilities of global exploration and local exploitation. (2) A mutation threshold is used to determine which particles need to be mutated. This method compensates for the inaccuracy of random mutation, effectively increasing the diversity of the population. To evaluate the performance of the proposed AIWPSO algorithm, benchmark functions are used for testing. The results show that AIWPSO achieves satisfactory results compared with those of other PSO algorithms. This outcome shows that the AIWPSO algorithm is conducive to balancing the abilities of the global exploration and local exploitation of the population, while increasing the diversity of the population, thereby significantly improving the optimization ability of the PSO algorithm.


2020 ◽  
Vol 10 (2) ◽  
pp. 95-111 ◽  
Author(s):  
Piotr Dziwiński ◽  
Łukasz Bartczuk ◽  
Józef Paszkowski

AbstractThe social learning mechanism used in the Particle Swarm Optimization algorithm allows this method to converge quickly. However, it can lead to catching the swarm in the local optimum. The solution to this issue may be the use of genetic operators whose random nature allows them to leave this point. The degree of use of these operators can be controlled using a neuro-fuzzy system. Previous studies have shown that the form of fuzzy rules should be adapted to the fitness landscape of the problem. This may suggest that in the case of complex optimization problems, the use of different systems at different stages of the algorithm will allow to achieve better results. In this paper, we introduce an auto adaptation mechanism that allows to change the form of fuzzy rules when solving the optimization problem. The proposed mechanism has been tested on benchmark functions widely adapted in the literature. The results verify the effectiveness and efficiency of this solution.


2018 ◽  
Vol 246 ◽  
pp. 01064 ◽  
Author(s):  
Sen Wang ◽  
Fang Yang ◽  
Zhipeng Ma ◽  
Shanzong Li ◽  
Yunyun Shi

In this paper, a hybrid particle swarm optimization (HPSO) algorithm is proposed to solve the problem of optimal water operation of cascade reservoirs in dry season. Based on the basic particle swarm optimization (PSO) algorithm, chaos algorithm is introduced to traverse the search space to generate the initial population and improve the global searching ability of the algorithm. A self-adaptive inertial weighting method based on optimized inertial weighting coefficient is adopted to improve the ability of particle individual search and avoid local optimum. The proposed algorithm is applied to the optimal water operation in dry season of cascade reservoirs on the mainstream of Xijiang River. The results show that the HPSO algorithm can effectively improve the guarantee degree of ecological flow and suppressing salinity flow in the control reach of Wuzhou station under different typical dry year scenarios.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
G. Loganathan ◽  
M. Kannan

Biofuel production offers a non-fossil fuel that can be utilized in modern engines without any redesign. Regardless of receiving rising attention, many researchers have explored microalgae-based biofuel production and found biodiesel production is cost-effective compared to petroleum-centered conventional fuels. The primary reason is that the lipid accumulation of microalgae is possible. An efficient technique is proposed for optimized biodiesel manufacturing with microalgae through an IoT device with the hybrid particle swarm optimization (HPSO) algorithm for elapsing such drawbacks. First, the component of biodiesel is determined. Then, from the components, the temperature value is sensed through the IoT device. Based on the obtained temperature, the reaction parameters are optimized with HPSO to increase productivity and reduce cost. Finally, we observed performance and comparative analysis. The experimental results contrasted with the existent particle swarm optimization (PSO) and genetic algorithm (GA) concerning iteration’s temperature, concentration, production, and fitness. The present HPSO algorithm has differed from the existing PSO and GA concerning IoT sensed temperature and production function. Fitness value and instance concentration are the performance parameters. It varies based on the iteration values. Thus, the proposed optimized biodiesel production is advanced when weighed down with the top-notch methods.


Sign in / Sign up

Export Citation Format

Share Document