scholarly journals Response of Maize to Different Intercropping Systems and Different Sowing Dates of Cowpea

2021 ◽  
Vol 36 (1) ◽  
pp. 169-180
Author(s):  
Moshira A. El-Shamy ◽  
Mona A.M. El-Mansoury ◽  
Maha A. El Bialy ◽  
Mohamed H. Helmy ◽  
A.F. Hassan

The recent challenge in agriculture is producing more yields by consuming less water, especially in areas with limited resources of land and water. The study was carried out at Sakha Agricultural Research station., kafr el- sheikh governorate, Egypt, during the 2018 and 2019 summer seasons to evaluate productivity and economic profitability of cowpea intercrop with maize under different sowing dates of cowpea as well as evaluate the efficiency of the system using the land equivalent ratio (LER), water equivalent ratio (WER), some water relations also Gross return. The split-plot design with three replications was used. The main plots were assigned to the cowpea sowing date (D1-1st May, D2 - 20th May, and D3- 9th June), the sub-plot was contained to the intercropping pattern (P1-(1:1), P2- (1:2) and P3-(2:4)). The highest values of irrigation water use efficiency (IWUE) and crop water use efficiency (CWUE) were given with the first sowing date under the intercropping system (1:2). The cowpea sowing dates had no significant differences in yield and some components of maize and on its interaction with intercropping patterns. The highest LER was found with the third sowing date for cowpea under intercropping system (1:2) treatment in two seasons, respectively. In economic viewpoint high additional increase in profits over each cost for all intercropping patterns especially the third sowing date for cowpea under the intercropping system (1:2).

Author(s):  
P. Chakraborty M. Das Bairagya ◽  
S. Sarkar J. M. L. Gulati ◽  
G. H. Santra N. Nayak ◽  
B. K. Sahoo

Sesame (Sesamum indicum L.) plays a vital role in the Indian agriculture, industry and export trade. It commonly known as til and also called as “queen of oilseeds” has been known to be one of the earliest domesticated edible oilseeds used by mankind. It is grown in wide range of environments extending from semi-arid tropics and subtropics to temperate regions. A field experiment entitled “effects of irrigation and nutrient management on summer sesame (Sesamum indicum L.)”,was conducted at the Agricultural Research Station, Brinjhagiri, Chatabar of Faculty of Agricultural Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar (Odisha) during summer season of 2021. Treatments included three irrigation levels (I1: 2 irrigations at 21 and 63 days after sowing, I2: 2 irrigations at 21 and 42 days after sowingand I3: 3 irrigations at 21, 42 and 63 days after sowing) are treated in main plot and four nutrient management (N1: 100% RDF, N2: 100% RDF + 2 t/ha FYM, N3: 100% RDF + 2 t/ha FYM + Jeevamrut @250l/ha and N4: 75% RDF + 2 t/ha FYM + Jeevamrut @250l/ha) are treated in sub plot were experimented in split plot design replicate thrice. The experiment was conducted with the variety of TKG-21 followed the spacing of 30 cm × 10 cm. The experimental soil was sandy loam in texture with the pH of 5.65 and EC of 7.33 ds/m. The recommended dose of NPK was given 30:15:15 kg ha-1. From the experiment, highest seed yield (643.49 kg ha-1), haulm yield (1820.13 kg ha-1) and harvest index (26.04%) was obtained in I3. N4 (75% RDF + 2 t/ha FYM + Jeevamrut @250l/ha) showed second highest seed yield (652.21 kg ha-1), haulm yield (1882.07 kg ha-1) and harvest index (25.74%) which is at per with N3. Highest water use efficiency (2.72 kg ha-1 m-1) was calculated in I2N3. Hence, it can be conclude that cultivation of sesame under75% RDF + 2 t/ha FYM + Jeevamrut @250l/ha with 2 irrigations at 21 and 42 days after sowing proved better in terms of yield, economics and water use efficiency.


Author(s):  
Hakan Büyükcangaz

The aim of this study was to determine the effect of deficit irrigation on yield for cabbage grown under unheated greenhouse condition. The research was carried out at the Agricultural Research Station of Yenişehir High School of Uludağ University in Bursa, Turkey, in 2008. In the study, water was applied to cabbage as 1.00, 0.75, 0.50, 0.25 and 0.00% (as control) of evaporation from a Class A Pan corresponding to 2 day irrigation frequency. Irrigation water applied ranged from 70 to 520 mm and water consumption ranged from 90 to 548 mm. The effect of irrigation water level on the yield, head height, head diameter, head weight and dry matter were found to be significant. The highest yield was 72.8 t ha-1. Crop yield response factor for cabbage (ky) was found as 1.036. The highest values of water use efficiency (WUE) and irrigation water use efficiency (IWUE) for 2008 year of K2cp treatment was calculated to be 0.143 kg m-3 and 0.137 kg m-3, respectively. K2cp application (75%) can be recommended as the most effective irrigation level for the cabbage to which drip irrigation is applied under scarce and unheated greenhouse conditions.


1970 ◽  
Vol 34 (3) ◽  
pp. 417-424
Author(s):  
SK Biswas ◽  
MA Razzaque Akanda ◽  
M Rafi Uddin ◽  
PK Sarker

A two-year field experiment was conducted at Regional Agricultural Research Station, Jessore during the rabi seasons of 2002-2003 and 2003-2004 to find out the level of disease incidence under different levels of irrigation and fungicide spray on the bulb yield of onion. Four irrigation levels: no irrigation (I1), irrigation at 10 days interval (I2), 20 days interval (I3), and 30 days interval (14) with 4 spray schedules: no spray (F1), one spray at 40 days after transplanting (DAT) (F2), two sprays each at 40 and 55 DAT (F3) and three sprays each at 40, 55, and 70 DAT (F4) were used. Yield and yield attributes varied significantly (p = 0.05) between sprayed and unsprayed, and irrigated and non-irrigated treatments, respectively. Higher yields were obtained with the higher frequencies of irrigation and spray. Application of fungicide reduced the disease severity significantly, while irrigation had no significant effect on disease infection. But there was a decreasing trend of the disease severity with increasing irrigation frequency. The highest bulb yield of onion (12.45 t/ha) was obtained with a total water use of 245 mm in six applications including an effective rainfall of 16 mm and three sprays. The disease severity between sprayed and unsprayed plots ranged from 1.33 to 3.16 for I1, 1.08 to 2.33 for I2 1.16 to 2.83 for I3, and 1.16 to 3.00 for I4, respectively. Key Words: Onion, disease incidence, irrigation, water use efficiency. DOI: 10.3329/bjar.v34i3.3967 Bangladesh J. Agril. Res. 34(3) : 417-424, September 2009


2006 ◽  
Vol 1 (3) ◽  
pp. 387 ◽  
Author(s):  
Michele Perniola ◽  
Irene Nardiello ◽  
Stella Lovelli

2020 ◽  
Vol 6 ◽  
pp. 127-135
Author(s):  
Ekubay Tesfay Gebreigziabher

Irrigation water availability is diminishing in many areas of the Ethiopian regions, which require many irrigators to consider deficit-irrigation strategy. This study investigated the response of maize (Zea mays L.) to moisture deficit under conventional, alternate and fixed furrow irrigation systems combined with three irrigation amounts over a two years period. The field experiment was conducted at Selekleka Agricultural Research Farm of Shire-Maitsebri Agricultural Research Center. A randomized complete block design (RCBD) with three replications was used. Irrigation depth was monitored using a calibrated 2-inch throat Parshall flume. The effects of the treatments were evaluated in terms of grain yield, dry above-ground biomass, plant height, cob length and water use efficiency. The two years combined result indicated that  net irrigation water applied in alternate furrow irrigation with full amount irrigation depth (100% ETc AFI) treatments was half (3773.5 m3/ha) than that of applied to the conventional furrow with full irrigation amount (CFI with 100% ETc) treatments (7546.9 m3/ha). Despite the very significant reduction in irrigation water used with alternate furrow irrigation (AFI), there was insignificant grain yield reduction in maize(8.31%) as compared to control treatment (CFI with100% ETc). In addition, we also obtained significantly (p<0.001) higher crop water use efficiency of 1.889 kg/m3 in alternate furrow irrigation (AFI), than that was obtained as 0.988 kg/m3 in conventional furrow irrigation (CFI). In view of the results, alternate furrow irrigation method (AFI) is taken as promising for conservation of water (3773.5 m3/ha), time (23:22'50" hours/ha), labor (217.36 USD/ha) and fuel (303.79 USD/ha) for users diverting water from the source to their fields using pump without significant trade-off in yield.


2017 ◽  
Vol 45 (2) ◽  
pp. 582-588
Author(s):  
Cristian G. DOMUŢA ◽  
Ana C. PEREȘ ◽  
Radu P. BREJEA ◽  
Ioana M. BORZA ◽  
Eugen JUDE ◽  
...  

The researches were carried out at the Agricultural Research and Development Station, Crișurilor Plain, Oradea, during 1990-2016. They have demonstrated that irrigation is needed every year due to the extension of the drought regions in Romania. Irrigation has become a basic element in the technology of the autumn cabbage crop due to the yearly pedological drought. For cabbage, the minimum watering depth is considered 0-50 cm, while an irrigation average rate of 2,410 m3/ha, with a variation range of 1,330-4,900 m3/ha had to be imposed in order to maintain the soil moisture content on the watering depth between the easily available water content and the field capacity. Irrigation improved the microclimate conditions and the ratio water/temperature + light (Domuţa climate index) increased. Daily water consumption increased as well. As a result, total water consumption increased by 70%, with a variation range of 19-872%. Irrigation determined an yield gain of 153%; water use efficiency (kg/m3) increased by 60.0%; irrigation water use efficiency recorded an average value of 13.4 kg yield gain/m3, with variation range 6.7 kg yield gain/m3-24.2 kg yield gain/m3. The correlations quantified in the soil-water-plant system (number of days with pedological drought, yield, respectively yield gain; Domuţa climate index-yield; water consumption-yield) support irrigation for the autumn cabbage crop from Crişurilor Plain.


1999 ◽  
Vol 79 (4) ◽  
pp. 627-637 ◽  
Author(s):  
D. A. Twerdoff ◽  
D. S. Chanasyk ◽  
M. A. Naeth ◽  
V. S. Baron ◽  
E. Mapfumo

To maintain a sustainable agricultural system, management practices such as grazing must ensure adequate soil water for plant growth, yet minimize the risk of soil erosion. The objective of this study was to characterize the soil water regime of perennial and annual forages under three grazing intensities (heavy, medium and light). The study was conducted at the Lacombe Research Station, Alberta, on an Orthic Black Chernozem of loam to silt loam texture. The forages used were smooth bromegrass (Bromus inermis L. 'Carlton'), meadow bromegrass (Bromus riparius L. 'Paddock'), a mixture of triticale (X Triticosecale Wittmack 'Pika') and barley (Hordeum vulgare L. 'AC Lacombe') and triticale. Soil water measurements were conducted between April and October of 1994 and 1995 using a neutron scattering hydroprobe to a depth of 90 cm. Surface (0–7.5 cm) soil water was more responsive to grazing intensity than soil water accumulated to various depths. For all grazing treatments and forages, both surface soil water and accumulated soil water generally fluctuated between field capacity and wilting point during the growing season. Although plant water status was not determined, no visual permanent wilting of forages was observed during the study. Differences in evapotranspiration (ET), as determined by differences in soil water were evident among forage species but not grazing intensities, with perennials having high ET in spring and annuals having high ET in summer. Estimated values of water-use efficiency (WUE) were greater for perennials than for annuals and grazing effects on WUE were minimal. From a management perspective, grazing of annuals and perennials altered soil water dynamics but still maintained adequate soil water for plant growth. Key words: Evapotranspiration, forages, grazing intensity, water-use efficiency


2021 ◽  
Vol 5 (5) ◽  
pp. 252-263
Author(s):  
Muhammad Rizwan Shoukat ◽  
Muhammad Shafeeque ◽  
Abid Sarwar ◽  
Kashif Mehmood ◽  
Muhammad Jehanzeb Masud Cheema

Investigating the effects of optimized fertilizer and irrigation levels on water use efficiency and productivity of wheat crop at small farms is of great importance for precise and sustainable agriculture in Pakistan's irrigated areas. However, traditional farmer practices for wheat production are inefficient and unsustainable. This study aimed to investigate the effects of deficit irrigation and nitrophos fertilizer levels on bread wheat grain yield, yield parameters, nutrient use and water use efficiencies in bed planting wheat compared to traditional farmers' practices in the flat sowing method. The two-year field experiment followed a randomized complete block design of three replications, taking three irrigation treatments according to the requirement of crop estimated by CROPWAT model (100% of ETC), deficit irrigation (80% of ETC), and deficit irrigation 60% of ETC and three nitrophos fertilizer treatments (farmer practice 120 kg N ha-1, optimized 96 kg N ha-1, and 84 kg N ha-1) at different growth stages. Crop ETC was calculated using the FAO CROPWAT 8.0 model from the last ten years (2003-2013) average climate data of the experimental station. The traditional farmer practice treatment was included as a control treatment with a flat sowing method compared with other sown-by-bed planter treatments. All treatments were provided with an equivalent amount of fertilizer at the basal dose. Before the first and second irrigation, top-dressing fertilizer was used in traditional farmers' treatment at the third leaf and tillering stages. It was applied in optimized treatments before the first, second, and third irrigation at the third leaf, tillering and shooting stages, respectively, under the bed planting method. The deficit level of irrigation (80% of ETc) and optimized fertilizer (96 kg N ha-1) showed the optimum grain yield, nutrient use, and water use efficiencies, with 20% reduced irrigation water and fertilizer levels than traditional farming practice. The results suggest that bread wheat should be irrigated with 80% of ETC and applied 96 kg N ha-1 nitrophos fertilizer at the third leaf, tillering, and shooting stages to achieve higher grain yield and water and nutrient use efficiencies under bed planting.


Sign in / Sign up

Export Citation Format

Share Document