scholarly journals Design of High Speed and Low Area Confined Multiplier on FPGA

2021 ◽  
Vol 11 (4) ◽  
pp. 2736-2746
Author(s):  
Kandagatla Ravi Kumar ◽  
Cheeli Priyadarshini ◽  
Kanakam Bhavani ◽  
Ankam Varun Sundar Kumar ◽  
Palanki Naga Nanda Sai

In this Advanced world, Technology is playing the major role. Most importantly development in Electronics field has a large impact on the improved life style. Among the advanced applications, DSP ranks first in place. Multipliers are the most basic elements that are widely used in the Digital Signal Processing (DSP) applications. Therefore, the design of the multiplier is the main factor for the performance of the device. Using RTL simulation and a Field Programmable Gate Array (FPGA), we compare the performance of a serial multiplier with an advanced multiplier. Many single bit adders are removed and replaced with multiplexers in this project. So that the less often used FPGAs are fully used by occupying fewer divisions and slices. The use of multiplier architecture results in significant reductions in FPGA resources, latency, area, and power. These multiplication approaches are created utilizing RTL simulation in Xilinx ISE simulator and synthesis in Xilinx ISE 14.7. Finally, the Spartan 3E FPGA is used to implement the design.

Author(s):  
Minh-Hong Nguyen

This paper presents a low-error, low-area FPGA-based hardware logarithm generator for digital signal processing systems which require high-speed, real time logarithm operations. The proposed logarithm generator employs the modified quasi-symmetrical approach for an efficient hardware implementation. The error analysis and implementation results are also presented and discussed. The achieved results show that the proposed approach can reduce the approximation error and hardware area compared with traditional methods.


Sign in / Sign up

Export Citation Format

Share Document