scholarly journals IMPROVEMENT OF DIRECT REGENERATION OF MEXICAN SOYBEAN FROM COTYLEDONARY NODES

Agrociencia ◽  
2020 ◽  
Vol 54 (3) ◽  
pp. 387-399
Author(s):  
Soledad Mora-Vásquez ◽  
Silverio García-Lara ◽  
Edgardo J. Escalante-Vázquez ◽  
Guy A. Cardineau

Plant tissue culture provides an alternative approach to improve the quality of soybean (Glycine max (L.) Merrill) cultivars. This study was undertaken to analyze the susceptibility of Mexican soybean for direct shoot regeneration and to determine the critical factors that affect in vitro performance. Our hypothesis was that Mexican soybean is suitable for in vitro regeneration using a cotyledonary node as explant. The effects of the seed disinfection procedure, soaking pretreatment before germination, soybean variety, as well as the culture medium composition of the shoot induction medium, were evaluated by two split-plot statistical designs. According to the statistical analysis, the seed disinfection procedure, the soaking pretreatment before germination, and the soybean genotype were the factors that brought about a significant effect (p£0.01), while the hormones composition of the shoot induction medium did not have a significant effect. The best response for multiple shoot formation was observed using a chlorine gas seed disinfection method, 3% hydrogen peroxide soaking pretreatment, and Huasteca-100, Nainari and Suaqui soybean genotypes. A robust protocol was developed, and under these selected conditions, it is possible to obtain more than 10 shoots per explant. Well-developed plantlets were obtained after 60 d of in vitro culture.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 461d-461
Author(s):  
Richard L. Bell ◽  
Ralph Scorza ◽  
Chinnathambi Srinivasan

An efficient regeneration/transformation system was developed for `Beurre Bosc' pear. Young leaves were harvested from in vitro shoots proliferated on a medium containing MS basal salts and 5 BAP, 0.5 μM IBA, and 0.6M3. Shoot regeneration was optimized using a modification of the medium of Chevreau and Leblay (1993). Explants were cultured on shoot induction medium contained 10 μM TDZ and 1 μM IBA for 4 weeks in the dark, and then transfered to a similar, but auxinless, regeneration medium until shoots developed, usually after an additional 4 to 8 weeks. Leaf tissues were transformed by co-cultivation for 3 days with Agrobacterium tumefaciens EHA101 carrying a pGA482 plasmid containing NPTII, GUS, and rolC genes, followed by cultivation on SIM containing 300 mg/L timentin. Putative transgenic plants were selected on shoot induction medium containing 80mg/L kanamycin, and multiplied on shoot proliferation medium. Four clones were confirmed as transgenic using the GUS histochemical assay and Southern blots for the NPTII and rolC genes. Plants of each clone have been rooted and successfully transfered to the greenhouse for further analysis of gene expression.


HortScience ◽  
2001 ◽  
Vol 36 (6) ◽  
pp. 1102-1106 ◽  
Author(s):  
V.R. Bommineni ◽  
H. Mathews ◽  
S.B. Samuel ◽  
M. Kramer ◽  
D.R. Wagner

Improved in vitro clonal propagation methods are valuable tools for nurseries and growers, and are essential for manipulation and improvement of tree fruit germplasm using the tools and techniques of biotechnology. We have developed a rapid shoot multiplication procedure for clonal propagation of apple, Malus ×domestica cv. Gale Gala and pear, Pyrus communis L. cv. Bartlett. Rapid clonal multiplication was achieved after the following series of steps: pre-conditioning of micropropagated shoots, sectioning pre-treated stems into thin slices, placing slices onto shoot induction medium and incubating directly under cool-white fluorescent lights or after a brief dark incubation. Multiple induction of shoots recovered from stem slice explants within three weeks of culture. A maximum of 37% of cultured apple stem slices, and 97% of pear stem slices, showed induction of shoots. More shoots were recovered on phytagel solidified shoot induction medium than on agar. Cultured stem slices of both apple and pear showed maximum recovery of shoots from shoot induction medium supplemented with thidiazuron (TDZ) compared to medium supplemented with BAP and kinetin. Under ideal conditions, pear stems generated four times the shoots as the same quantity or length of apple shoots. Micropropagated shoots were rooted and transferred to the greenhouse and field nursery for further evaluation. Chemical names used: N-phenyl-N′-1,2,3-thidiazol-5-ylurea (thidiazuron or TDZ); 6-benzylaminopurine (BAP).


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 461E-461
Author(s):  
Winthrop B. Phippen ◽  
James E. Simon

A plant regeneration protocol was successfully developed for basil (O. basilicum L.). Explants from 1-month-old seedlings yielded the highest frequency of regeneration of shoots (37%) with an average number of 3.6 shoots per explant. Calli and shoot induction were initiated on Murashige and Skoog (MS) basal medium supplemented with thidiazuron (TDZ) (4 mg/L) for ≈30 days. Shoot induction and development was achieved by refreshing the induction medium once after 14 days. The most morphogenetically responsive explants were basal leaf explants from the first fully expanded true leafs of greenhouse-grown basil seedlings. Developing shoots were then rooted on MS media in the dark without TDZ. Within 20 days, rooted plantlets were transferred and acclimatized under greenhouse conditions where they developed normal morphological characteristics. This is the first report of a successful in vitro regeneration system for basil through primary callus. The establishment of a reliable regeneration procedure is critical when developing a transformation protocol for enhancing the production of basil for insect and disease resistance and improved essential oil constituents.


2008 ◽  
Vol 21 (1) ◽  
pp. 43-48
Author(s):  
S. M. H. Kabir ◽  
M. S. Ali ◽  
M. K. Islam

The Experiment was conducted to establish an efficient plant regeneration protocol from hypocotyl sections of soybean. Callus initiation, shoot and root development were observed by using different concentrations and combinations of growth regulators. The best result for callus induction was observed in MS medium supplemented with 1.5 mg/l Kinetin and 2.0 mg/l NAA. The calli were transferred to shoot induction medium. The best shoot induction occurred in the medium containing 3.0 mg/l BAP and 0.5 mg/l NAA. The elongated shoots developed roots on MS medium supplemented with different IBA concentrations where 1.5 mg/l IBA was the best for root development. Plantlets with a well developed root system were transplanted in plastic container with a soil mixture of cowdung and fine sand. Plantlet survival rate was 70%. Through this experiment, a general suitable regeneration protocol from hypocotyls of soybean has been developed which can potentially be used for micropropagation and future transformation research in soybean.DOI: http://dx.doi.org/10.3329/bjpbg.v21i1.17049


2018 ◽  
Vol 44 (3) ◽  
pp. 459-463
Author(s):  
PK Roy

An efficient protocol was developed for in vitro mass propagation of Paulownia tomentosa (Thunb.) Steud. using shoot tip and leaf segment explants from field grown plant. Different concentrations and combinations of BAP, Kn, zeatin and NAA were used for multiple shoot regeneration. Among two types of explants, leaf segment produced the highest number of shoots per explant (12 ± 0.4) when they were cultured on MS supplemented with 3.0 mg/l Kn and 0.5 mg/l NAA. Addition of 10% CW to above mentioned medium increased the number of shoots (18) per culture. Shoot tip explants also produced multiple shoots in the same medium, but their performance was not good as leaf segment explants. For shoot elongation, 100 mg/l urea was more effective when added with best shoot induction medium. Shoots rooted well in halfstrength MS supplemented with 2.0 mg/l NAA, within 12 - 15 days. Regenerated plantlets were successfully acclimatized and established in poly bag containing a mixture of soil and compost in 2:1 ratio. About 90% plantlets survived under open field conditions.


2006 ◽  
Vol 85 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Seedhabadee Ganeshan ◽  
Sanjay V. Chodaparambil ◽  
Monica Båga ◽  
D. Brian Fowler ◽  
Pierre Hucl ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
B. Kour ◽  
G. Kour ◽  
S. Kaul ◽  
M. K. Dhar

The present investigations were made attempting to develop a rapid, reliable, and reproducible in vitro regeneration protocol for Artemisia absinthium L., a medicinal plant of Kashmir Himalayas. Out of several auxin-cytokinin combinations tested, Murashige and Skoog’s (MS) medium supplemented with 0.5 mgL−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mgL−1 kinetin (Kn) was found to be the best for the callus induction. On the other hand, 4.5 mgL−1 6-benzylaminopurine (BAP) and 0.5 mgL−1 1-α-naphthaleneacetic acid (NAA) in the medium resulted in maximum shoot induction from the callus. Similarly, BAP and NAA at a concentration of 1.5 mgL−1 and 0.5 mgL−1, respectively, proved to be the best for the multiple shoot induction from nodal explants. Numerous shoots were obtained from nodal explants after third subculture. In vitro rooting was maximum on medium containing indole-3-butyric acid (IBA) at 0.5 mgL−1. The genetic stability of the in vitro raised plants of Artemisia absinthium was assessed using the intersimple sequence repeat (ISSR) and sequence-specific amplification polymorphism (SSAP) molecular markers. Both markers were able to detect the somaclonal variations in the callus regenerated plants, while no variation was detected in the plants regenerated from the nodal explants. SSAP has been found to be more useful in detection of variability as compared to ISSR molecular marker. The results of present study concluded that the direct regeneration protocol will be useful for the production of true to type plants of this medicinally important plant. This will go a long way in reducing the pressure on the natural populations for the secondary metabolite production, especially for extraction of essential oils.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 572c-572
Author(s):  
Hak-Tae Lim ◽  
Kei-youn Lee ◽  
Yeoung-Sook Yoo ◽  
Duck-Chun Yang

Since in vitro regeneration and transformation systems in hot pepper (Capsicum annuum L.) have not been available, the application of new genetic manipulations has been limited. Here we report an efficient procedure to regenerate whole pepper plants and to generate transgenic plants expressing a foreign gene was established. High frequency of plant regeneration was observed when hypocotyl and cotyledon explants were cultured on MS/B5 medium supplemented with NAA 0.05 mg·L–1 plus zeatin 2.0 mg·L–1, NAA 0.05 mg·L–1 plus zeatin 2.0 mg·L–1, IBA 10.0 mg·L–1 plus BA 1.0 mg·L–1, IAA 0.02 mg·L–1 plus zeatin 3.0 mg·L–1. An addition of AgNO3 5–10 μm to these media improved the regeneration rate by about 10%. For plant transformation, hypocotyl and cotyledon explants of pepper were preconditioned on kanamycin-free shoot induction medium for 48 hours. Then, co-cultivation with Agrobacterium tumeaacience was done on the co-culture medium for 2 days. The explants were then blotted in sterile filter paper and placed on shoot induction and selection medium containing kanamycin sulfate (100 mg·L–1) and carbenicillin (500 mg·L–1). PCR showed that the introduced ADA gene was integrated and stably expressed in the regenerated plants. ADA enzyme activities were checked by spectrophotometric analysis.


2012 ◽  
Vol 43 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Roberson Dibax ◽  
Giovana Bomfim de Alcantara ◽  
Marília Pereira Machado ◽  
João Carlos Bespalhok Filho ◽  
Ricardo Augusto de Oliveira

The objectives of this study were to establish appropriate conditions for obtaining plant regeneration and acclimatization of the 'RB92579' and 'RB93509' sugarcane cultivars and to elucidate the shoots origin through histological analysis. For both cultivars, obtaining shoots showed better results with the culture of explants on a callus induction medium containing 2.0mg L-1 2,4-dichlorophenoxyacetic acid, followed by cultivation on a shoot induction medium containing 0.1mg L-1 kinetin and 0.2mg L-1 benzilaminopurine. The MS medium without growth regulators proved to be appropriate for elongation and rooting of shoots and the use of the composed substrate of vermiculite + MS salts was effective for acclimatization. Histological analysis revealed that the origin of the shoots in both cultivars occurred through indirect organogenesis.


2021 ◽  
Author(s):  
Jorge Fonseca Miguel

The response on callus and shoot formation under different light incubation conditions was evaluated in cucumber (Cucumis sativus L.). Four-day-old cotyledon explants from the inbred line 'Wisconsin 2843' and the commercial cultivars 'Marketer' and 'Negrito' were employed. A four-week culture was conducted on MS-derived shoot induction medium containing 0.5 mg L-1 IAA and 2.5 mg L-1 BAP, under an 8-h dark/ 16-h light regime, or by a one- or two-week dark pre-incubation followed by the same photoperiod. Significant differences were obtained for the regeneration of shoots in all cultivars. The response in both frequency and number of shoots under continuous photoperiod was at least 3-6 fold higher than with dark pre-incubation. The highest genotypes response was obtained by 'Negrito' and 'Marketer' with identical values. All explants formed callus, and in two of the three cultivars, the response on callus extension was not significantly affected by incubation conditions. The results clearly show that shoot induction under continuous photoperiod regime was beneficial for adventitious shoot regeneration in cucumber.


Sign in / Sign up

Export Citation Format

Share Document